

Modular reconfiguration of DNA origami assemblies using tile displacement

Namita Sarraf, Kellen Rodriguez, and Lulu Qian

Bioengineering Computer Science Computation & Neural Systems

Caltech DNA29, September 14, 2023 The power of natural evolution lies in the adaptability of biological organisms but is constrained by the time scale of genetics and reproduction.

Engineering artificial molecular machines should not only include adaptability as a core feature but also apply it within a larger design space and at a faster time scale.

Modular electromechanical robots

CEBOT (Fukuda et al. 1988) Crystalline (Rus et al. 2001) MTRAN (Murata et al. 2002) PolyBot (Yim et al. 2002) Programmable Parts (Klavins et al. 2005) Molecubes (Zykov et al. 2005) SuperBot (Shen et al. 2006) Miche (Rus et al. 2006) SMORES (Davey et al. 2012) M-Block (Romanishin et al. 2015) ModQuad (Saldana et al. 2018)

Future cell-scale molecular robots

Concept of DNA tile displacement

Petersen, Tikhomirov, and Qian, Nature Communications (2018)

Modular reconfiguration of DNA origami assemblies

Namita Sarraf

Kellen Rodriguez

A simple tile displacement reaction

 $CT:BT + Inv \rightarrow Inv:BT + CT$

A simple tile displacement reaction

How many unique strand displacement reactions can be created using a gate strand that has a given length and sequence?

n unique reactions: $X_i \rightarrow Y_i$ where $1 \le i \le n$

toehold = 6 nucleotides branch migration = 16 nucleotides How many unique strand displacement reactions can be created using a gate strand that has a given length and sequence?

n unique reactions: $X_i \rightarrow Y_i$ where $1 \le i \le n$

toehold = 6 nucleotides branch migration = 16 nucleotides 34-nucleotide gate \Rightarrow 3 reactions

How many unique strand displacement reactions can be created using a gate strand that has a given length and sequence?

n unique reactions: $X_i \rightarrow Y_i$ where $1 \le i \le n$

toehold = 6 nucleotides branch migration = 16 nucleotides 22-nucleotide gate \Rightarrow 1 reaction

22-helix tile width \implies ? reactions

22-helix tile width \Rightarrow 1,104 reactions

4 edge identities \Rightarrow 4 reactions

Same type of toehold and branch migration domains

Mixed types of toehold and branch migration domains

Receiving: 2-nt truncation

Mixed types of toehold and branch migration domains

4 toehold identities \times 4 branch migration identities \Rightarrow 16 reactions

All four giving and receiving combinations of toehold and branch migration domains exhibited similar kinetics

 N_t : Number of toehold identities

 N_b : Number of branch migration identities for a given toehold

Number of distinct reactions: $N = N_t \times N_b$

	N _t	N _b	N
G-G	4	1	4
R-R	4	1	4
G-R	4	4	16
R-G	4	4	16
Total			40

Giving toehold – **R**eceiving branch migration **R**eceiving toehold – **G**iving branch migration

A discontinuous toehold is conceptually similar to mismatch elimination in strand displacement, but in comparison it has much faster kinetics. Why?

A discontinuous toehold is conceptually similar to mismatch elimination in strand displacement, but in comparison it has much faster kinetics. Why?

• less entropic cost

A discontinuous toehold is conceptually similar to mismatch elimination in strand displacement, but in comparison it has much faster kinetics. Why?

Explanations:

- less entropic cost
- larger space

 N_t : Number of toehold identities N_b : Number of branch migration identities for a given toehold N_p : Number of toehold locations

Ν N_b N_t N_{p} G-G 1 4 4 R-R 1 4 4 G-R 4 17 272 4 272 R-G 17 4 4 552 **Total**

Number of distinct reactions: $N = N_t \times N_b \times N_p$

Toeholds consist of 3 out of 11 edge staples, no two share more than one staple in common.

111444 4400 $N_{p} = 17$

 N_t : Number of toehold identities

 N_b : Number of branch migration identities for a given toehold

 N_p : Number of toehold locations

 N_e : Number of staple extension locations

Number of distinct reactions: $N = N_t \times N_b \times N_p \times N_e$

	N _t	N _b	N_p	N _e	N
G-G	4	1	1	2	8
R-R	4	1	1	2	8
G-R	4	4	17	2	544
R-G	4	4	17	2	544
Total					1104

5' staple extension 3' staple truncation 3' staple extension5' staple truncation

 $N_{\rho} = 2$

How robust are tile displacement reactions to spurious interactions such as cross-talk and occlusion?

 N_t : Number of toehold identities

 N_b : Number of branch migration identities for a given toehold

 N_p : Number of toehold locations

 N_e : Number of staple extension locations

Number of distinct reactions: $N = N_t \times N_b \times N_p \times N_e$

	N _t	N _b	N _p	N _e	N
G-G	4	1	1	2	8
R-R	4	1	1	2	8
G-R	4	4	17	2	544
R-G	4	4	17	2	544
Total					1104

Self-occluding edges exhibited slower kinetics

Self-occluding edges exhibited slower kinetics

How robust are tile displacement reactions to spurious interactions such as cross-talk and occlusion?

 N_t : Number of toehold identities

 N_b : Number of branch migration identities for a given toehold

 N_p : Number of toehold locations

 N_e : Number of staple extension locations

Number of distinct reactions: $N = N_t \times N_b \times N_p \times N_e$

	N _t	N _b	N_p	N _e	N
G-G	4	1	1	2	8
R-R	4	1	1	2	8
G-R	4	3	17	2	408
R-G	4	3	17	2	408
Total					832

To maintain a controlled tile displacement rate, self-occluding edges should be avoided.

E1 E2 E3 E4

E1 E2 E3 E4

monomers =
$$\{a, b, c\}$$

rules = $\{\{a, b\}, \{a, c\}, \{b, a\}\}$
rates = $\{k, k, k\}$, where $k = 4.5 \times 10^5$
maxlength = 20
reactions = polymerCRN[monomers, rules, rates, maxlength]

monomers = $\{a, b, c\}$ rules = $\{\{a, b\}, \{a, c\}, \{b, a\}\}$ rates = $\{k, k, k\}$, where $k = 4.5 \times 10^5$ maxlength = 20 reactions = polymerCRN[monomers, rules, rates, maxlength]

Example reactions enumerated with maxlength = 3:

$$a + b \xrightarrow{k} ab \qquad b + a \xrightarrow{k} ba \qquad ba + b \xrightarrow{k} bab$$
$$a + c \xrightarrow{k} ac \qquad b + ab \xrightarrow{k} bab \qquad ba + c \xrightarrow{k} bac$$
$$ab + a \xrightarrow{k} aba \qquad b + ac \xrightarrow{k} bac \qquad a + ba \xrightarrow{k} aba$$

lower tile ratio c: (a + b) results in longer polymers

tile ratio *a*: *b* determines whether even or odd-length polymers are favored

Mystery 1: roughly 50% of the structures contained just tiles a and b, contradictory to the simulation prediction that the concentrations of ab-only polymers should be approximately zero.

Mystery 2: more ac dimers (length = 2) were observed in experiments than what simulations predicted.

Hypothesis: barrel formation

Hypothesis: barrel formation

Mystery 1: roughly 50% of the structures contained just tiles a and b, contradictory to the simulation prediction that the concentrations of ab-only polymers should be approximately zero.

Mystery 2: more ac dimers (length = 2) were observed in experiments than what simulations predicted.

Reactions like $abab + ac \rightarrow ababac$ cannot take place if polymers like abab have formed barrel structures.

Hypothesis: barrel formation

annealed tiles a and b at 1:1 ratio and then added tile c to the mixture

Hypothesis: barrel formation </

sword

Sarraf, Rodriguez, and Qian, Science Robotics (2023)

200 nm

Binding between DNA tiles has limited specificity, and thus tile assembly systems must operate near melting temperature.

Binding between DNA tiles has limited specificity, and thus tile assembly systems must operate near melting temperature.

Tile displacement systems operate at room temperature with little crosstalk between distinct reactions, serving as a mechanism for modular reconfiguration robust to temperature and tile concentration.

Future work: localized tile displacement

Tile displacement cellular automata

Erik Winfree and Lulu Qian

Bioengineering Computer Science Computation & Neural Systems

Caltech DNA29, September 14, 2023

The Qian lab @ Caltech

Lulu Qian

Greg Tikhomirov

Wei Li

Tianqi Dominic Scalise

Anu

Kevin Hope Cherry Johnson

Namita Sarraf

Zou

Matthew Plazola

Song

Gokul

Gowri

Dallas

Taylor

Kellen

Rodriguez

Spencer Martin Winter Holmes

Davidson

Allison

Glynn

Kinetics of DNA tile displacement

	dis	Tile splacement	Strand displacement
binding rate	<i>x</i> = 1	$2.5 imes 10^4$ /M/s	$2 \times 10^{6} / M/s$
(<i>k</i> _{on})	<i>x</i> = 2	$4.5 imes 10^5$ /M/s	2×10 / W// 3
dissociation rate	x = 1	$10^{1-1.1y}/s$	106-L/c
(k _{off})	<i>x</i> = 2	$10^{3-2y}/s$	10 /5
displacement rate ($k_{ m d}$)	0.025/s		1/s

Petersen, Tikhomirov, and Qian, Nature Communications (2018)