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1 Materials and methods

1.1 Sample preparation

Single-stranded M13mp18 DNA (scaffold strand) was purchased from Bayou Biolabs (catalog #
P-107) at 1 g/L in 1× TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The concentration
of the scaffold strand was calculated on the basis of DNA ultraviolet absorbance measurements at
260 nm using NanoDrop2000 (Thermo Scientific). Staple strands (sequences listed in Supplementary
Tables 1 to 5) were purchased unpurified from Integrated DNA Technologies in 1× TE buffer (pH
8.0) at 100 µM each. Negation strands (sequences listed in Supplementary Table 6) that are
complementary to the edge staples were purchased at 200 µM each. The strands were diluted to
15 µM in 1× TE buffer and loaded into Echo qualified 384-well source microplate (Labcyte).

Individual DNA origami tiles were mixed from the source plate by Echo 525 liquid handler
(Labcyte) to yield 10 µL total volume with 10 nM scaffold strand and 75 nM staples in 1× TE
buffer with 12.5 mM Mg2+, after the addition of the negation strands. (Before the negation strands
were added, during annealing of the individual DNA origami tiles, the volume was slightly lower
than 10 µL and the concentrations of the scaffold and staples were slightly higher than 10 nM
and 75 nM, respectively.) The scaffold and staples were kept at 90 ◦C for 2 min and annealed
from 90 ◦C to 20 ◦C at 6 sec per 0.1 ◦C in a twin.tec 96-well skirted PCR plate (Eppendorf,
catalog # 951020401) sealed with domed cap strips (Eppendorf, catalog # 0030124839) on a Nexus
Mastercycler (Eppendorf). After the anneal, a five-fold excess (relative to the concentration of the
staple strands) of a full set of 44 negation strands were added to each type of DNA origami tile and
quickly cooled down from 50 ◦C to 20 ◦C at 2 sec per 0.1 ◦C.

2 by 2 arrays were prepared by mixing equal volumes of four individual tiles and annealing from
55 ◦C to 45 ◦C at 2 min per 0.1 ◦C and from 45 ◦C to 20 ◦C at 6 sec per 0.1 ◦C. The total annealing
time is roughly 3.5 hours.

4 by 4 arrays were prepared by mixing equal volumes of four 2 by 2 arrays obtained in the
previous step and annealing from 45 ◦C to 35 ◦C at 8 min per 0.1 ◦C and from 35 ◦C to 20 ◦C at 6
sec per 0.1 ◦C. The total annealing time is roughly 13.5 hours.

8 by 8 arrays were prepared by mixing equal volumes of four 4 by 4 arrays obtained in the
previous step and annealing from 35 ◦C to 25 ◦C at 32 min per 0.1 ◦C and from 25 ◦C to 20 ◦C at
6 sec per 0.1 ◦C. The total annealing time is roughly 53.5 hours.

For arrays with patterns, a 10-fold excess of poly-A strand was added to the arrays before AFM
imaging, allowing at least ten minutes for the poly-A strand to hybridize to the poly-T staple
extensions at room temperature.

Important note: it is absolutely essential that all tiles or arrays are mixed at equal concentra-
tion in all stages, otherwise the yield will decrease significantly. To achieve the best yield, a tight
seal of the plate during annealing is necessary. We explored several sealing options including films,
foils and caps, and the cap strips specified above produced the most reliable results. However, even
with a tight seal, it is still possible that some wells in the plate will evaporate more than other
wells. Taking this evaporation into consideration, it is also necessary to transfer all solution from
the wells for mixing the tiles or arrays.
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1.2 Echo protocol

The transfer volume in a protocol for an Echo 525 liquid handler must be multiples of 25 nL.
Additionally, the volume of sample in each well of the Echo qualified 384-well source plate must be
15 to 65 µL, resulting in 15 µL of unusable sample. Because of both constraints, we diluted the
edge staples to 15 µM before storing them in a source plate. This resulted in a transfer volume of
50 nL for each edge staple to have the 75 nM target concentration in a 10 µL total volume. If all
staples were at 15 µM, the total volume would have exceeded 10 µL. Thus we diluted the interior
staples (including those with extensions) to 30 µM, resulting in a transfer volume of 25 nL for each
interior staple.

Because the bridge staples are the same in all tiles, we mixed them together and divided the
mixture into five wells in a source plate. The concentration of the bridge staple mixture was at
100/38 = 2.63 µM, for 38 distinct bridge staples. Based on the target concentration and volume,
the desired transfer volume of the bridge staple mixture should be 57 nL per well. Rounding it to
the multiples of 25 nL yielded the actual transfer volume of 50 nL. The smaller volume is ok because
the staples are in large excess relative to the M13 scaffold. In the FracTile Compiler, we wanted
to make it convenient for the users to organize their strands, by fitting all strands and buffer in a
single 384-well source plate. To do that, we divided the bridge staple mixture into two wells instead
of five, resulting in a transfer volume of 125 nL per well.

The concentration of the M13 scaffold varied from batch to batch, but typically the difference
is no more than 10%. We used 0.343 µM of M13 divided into twelve wells in the source plate. The
desired transfer volume is 24.3 nL per well, for 10 nM target concentration in 10 µL. We rounded
it to 25 nL per well, which is the nearest multiples of 25 nL. Again, for the purpose of fitting all
strands in one 384-well source plate, we used only three wells in the FracTile Compiler, resulting in
a transfer volume of 100 nL per well.

We used eight wells of 1×TE/10×Mg2+, resulting in a transfer volume of 125 nL per well for the
target volume of 10 µL per tile. We used sixteen wells of 1×TE, generally resulting in a transfer
volume of 175 to 200 nL per well, distributed as evenly as possible. The difference in the volume
of 1×TE is due to the fact that the total number of edge staples varies in different tiles. In the
FracTile Compiler, we kept the same number of wells for 1×TE/10×Mg2+, but reduced it to fifteen
wells for 1×TE, also for the purpose of fitting all strands in one source plate.

A full set of 44 negation strands were mixed together at 200 µM each, resulting in 200/44 =
4.545 µM of the mixture. As the target concentration is 75 × 5 = 375 nM in 10 µL, the desired
transfer volume is 825 nL. The negation strand mixture was added to each tile either by Echo
or by manual pipetting after the tiles were individually annealed. We had sixteen wells of the
negation strand mixture in a source plate, each was used to transfer 825 nL four times into a 96-
well destination plate, for adding the mixture to a total of 64 tiles in an 8 by 8 array. In the FracTile
Compiler, we left out the negation strand mixture from the source plate to make room for other
strands.

The manual protocol generated by the FracTile Compiler uses the same concentrations and
transfer volumes as in the Echo protocol.
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1.3 AFM imaging

Samples for AFM imaging were prepared by diluting the annealed samples ten fold, resulting in
1 nM of the scaffold strand (i.e. the sum of all monomers) in 1× TE/Mg2+ buffer. After dilution,
40 µL of the sample was deposited onto freshly cleaved mica (SPI Supplies, 9.5 mm diameter,
catalog # 01873-CA). After 30 sec the solution was removed by sucking up all the liquid that comes
off in a single thumb-up movement while keeping the pipette attached to and almost perpendicular
to the mica surface. To minimize the background during imaging, the excess of staple and negation
strands was removed as follows. The mica surface was washed three times with 40 µL TE buffer
containing 10 mM MgCl2 and 100 mM NaCl, by performing 10 down-and-up thumb movements
for each wash. After that, 80 µL of 1× TE/Mg2+ buffer was added onto the mica and the sample
was imaged. AFM images were taken using tapping mode in fluid on a Dimension FastScan Bio
(Bruker) with FastScan-D tips (Bruker). Typical scanning parameters were: scan rate = 5 Hz, lines
= 1024, amplitude set point = 30–50 mV, drive amplitude = 180–240 mV, drive frequency = 110
Hz, integral gain = 1, proportional gain = 2.
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2 Challenges for uniquely-addressable DNA origami arrays

Multi-stage

One-pot

Two-stage

Figure 1: Overview of uniquely-addressable two-dimensional DNA nanostructures. Each point in the
log− log plot corresponds to the size of a DNA nanostructure and the number of nucleotides in unique strands
self-assembled in the nanostructure. Although Wang et al explored both one-pot and two-stage experiments, we
show the work as one-pot because no interior or edge strands were reused. Similarly, Rajendran et al explored both
two-stage and three-stage experiments, and we show the work as two-stage because no edge strands were reused.

There are three types of approaches for creating uniquely-addressable two-dimensional DNA nanos-
tructures (Supplementary Fig. 1). Distinct DNA strands can be annealed together in one pot to
create DNA origami10,14 and arrays of single-stranded tiles32 and double-crossover tiles.33 The one-
pot approaches are easy to implement, but the number of nucleotides in unique strands increases
linearly with the size of the structure. The increasing number of nucleotides makes it difficult to
scale up, due to the cost of the strands, the design challenges for controlling the spurious interac-
tions among distinct strands, and the resulting decrease in yield. Using hierarchical approaches,
DNA molecules can be annealed in two stages, first self-assembling into smaller structures such as
cross-shaped DNA tiles34 or DNA origami tiles,11–13 and then the individual tiles coming together to
form larger structures. In the two-stage approaches, the interior strands can be reused for different
tiles, but an increasing number of unique edge strands is still required. Multi-stage hierarchical
approaches make it possible to reuse both interior and edge strands, as shown in a 4 by 4 array
of small DNA tiles.17 Because of the potential for creating arbitrarily complex structures from a
simple set of tiles, the strategies for multi-stage self-assembly have been explored extensively in
theory.16,35–37 However, none of these theoretical strategies has yielded a successful experimental
demonstration.
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In prior work, we developed a framework for creating random tilings with both unbounded and
finite DNA origami arrays.18 The finite arrays self-assembled in two stages had a four-fold rotational
symmetry, which only required n2/4 distinct types of tiles and n(n − 1)/2 distinct types of edges
for arrays of size n by n. For example, 4 by 4 arrays were constructed with 4 distinct tiles and
6 distinct pairs of edges (Supplementary Fig. 2, top row). The small number of distinct tiles and
edges allowed us to successfully construct arrays of sizes 3 by 3 to 5 by 5. However, the rotational
symmetry of these arrays does not allow unique addressability.

To create uniquely-addressable DNA origami arrays, we had to use four times the number of
distinct types of tiles and edges compared to the prior work. For example, 4 by 4 arrays now require
16 distinct tiles and 24 distinct pairs of edges (Supplementary Fig. 2, middle and bottom rows).
In prior work, we used two types of edge codes with a stronger and a weaker binding energy: the
stronger one was composed of 11 edge staples, each has a stacking bond and a one-nucleotide sticky
end; the weaker one was composed of 4 edge staples, each has a stacking bond and a two-nucleotide
sticky end (Supplementary Fig. S54 of ref.18). The stronger edge code was used for interactions
between tiles composing each of the four 2 by 2 arrays and the weaker edge code was used for
interactions between the 2 by 2 arrays. Taking advantage of the M13 sequences being different on
the four sides of the square origami tile, each edge code can provide a maximum of four pairs of
distinct edges. Therefore, we cannot use the two types of edge codes in the arrays with rotational
symmetry to create 24 distinct pairs of edges for the uniquely-addressable arrays (16 for interactions
between tiles composing each of the four 2 by 2 arrays and 8 for interactions between the 2 by 2
arrays).

Keeping the edge codes palindromic as in prior work, there are a total of
(
4
2

)
= 6 types of edge

codes, using 4 out of the 8 edge staples (positions 2 through 5 and 7 through 10) that each has a
stacking bond and a two-nucleotide sticky end. Using all six edge codes, we now have 6 × 4 = 24
distinct edges to create the uniquely-addressable 4 by 4 arrays. However, the yield of these arrays
was substantially lower than the 4 by 4 arrays with rotational symmetry (Supplementary Fig. 2,
middle row), presumably due to the increased spurious interactions among the increased number
of distinct tiles. More importantly, the 24 distinct pairs of edges used in the 4 by 4 arrays already
reached our limit for designing orthogonal edges, and thus it is not possible to create larger uniquely-
addressable arrays using the same method.

Dividing the self-assembly process into more stages could provide a natural solution for (i)
reducing spurious interactions (by reducing the total number of possible reactions at any given time
during self-assembly), and (ii) using fewer distinct edges (by reusing the same edge interactions for
tiles that are in different test tubes at the same stage). However, multi-stage self-assembly cannot
work unless the edge design is compatible with a multi-stage annealing protocol: there must exist
an annealing temperature for each stage that is both low enough to keep the structures from a
previous stage stable and high enough to melt the spurious interactions at the current stage. When
we attempted to create the 4 by 4 arrays in three stages, we first annealed the sixteen individual
tiles from 90 to 20 ◦C, then annealed the four 2 by 2 arrays in separate test tubes from 50 to
20 ◦C, and finally annealed the four 2 by 2 arrays together from 30 to 20 ◦C. Because the melting
temperature of the 2 by 2 arrays is about 35 ◦C (Supplementary Fig. S23 of ref.18), we had to keep
the annealing temperature of the third stage below that, which was not high enough to melt the
spurious interactions and resulted in an extremely poor yield (Supplementary Fig. 2, bottom row).
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Design diagram
Annealing 
protocol

AFM image Yield

4 by 4 array with a 
four-fold rotational 
symmetry

Tikomirov et. al.
Nat. Nanotechnol.
2016

two-stage 15%

4 by 4 array with 
unique 
addressability

two-stage 4.7%

three-stage 0%

Figure 2: Prior work and failed attempts for creating uniquely-addressable DNA origami
arrays. All AFM images are 10 by 10 µm. The yield of each sample was estimated using AFM
images of 30 by 30 µm.
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3 Key definitions and abstractions

DNA origami tile 

inert edges receiving edges giving edges 

abstract tile 

N

S

EW

N

S

EW

N

S

EW

edge code

nucleotide 
truncation

nucleotide 
extension

two 
hairpins

0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0

0 1 1 1 1 0 1 1 1 1 0
0 x1 x2 x3 x4 0 x4 x3 x2 x1 0

0 1 1 1 1 0 1 1 1 1 0
0 x1 x2 x3 x4 0 x4 x3 x2 x1 0

Figure 3: Key definitions and abstractions. A square DNA origami tile has four edges: north (N), east (E),
south (S) and west (W). Each edge has a maximum of eleven staples. Because the four triangles composing the
square tile are folded from different parts of the M13 scaffold, the staples on the four edges naturally have different
sequences. “Inert edges” are created using five edge staples that are each capped with two hairpins to inhibit their
interactions with other edge staples. Inert edge staples are colored black. Six edge staples are left out and the
remaining scaffold loops are colored gray. There are two types of “active edges”: “receiving edges” are created using
eight or less edge staples that each has a two-nucleotide truncation on the 3’ end; “giving edges” are created using
eight or less edge staples that each has a two-nucleotide extension on the 5’ end. An “edge code” is associated with
each receiving or giving edge: the code consists of eleven 0s and 1s. Each 0 corresponds to a scaffold loop and each
1 corresponds to a staple. Receiving staples on the north, east, south and west edges are colored blue, green, orange
and yellow, respectively. Giving staples are colored based on the sequence identity of the extension: extensions that
are complementary to the truncations on the north, east, south and west edges are colored blue, green, orange and
yellow, respectively. Although a giving edge can be complementary to any receiving edge, we only use north giving to
west, east giving to north, south giving to east, and west giving to south in the design of fractal assembly. Abstract
tiles are used to simplify the illustration. The edge colors in an abstract tile correspond to the staple colors in an
origami tile. Each indentation corresponds to a 1 in an edge code for a receiving edge. Each bump corresponds to a
1 in an edge code for a giving edge. In fractal assembly, we use palindromic edge codes that have three 0s at fixed
locations. Therefore, only the second to fifth digits are needed to infer any edge code, and only the 1s in these four
digits are shown as indentations or bumps in an abstract tile.
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4 Melting temperature measurement
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Figure 4: Fluorescence experiments for melting temperature measurement. a, Tile ab-
straction and edge design of a 2 by 2 array. A ROX fluorophore (shown as a red dot) is attached to
the 5’ end of an edge staple in one DNA origami tile, and a Iowa Black RQ quencher (shown as a
black dot) is attached to the 3’ end of an edge staple in another tile. When the tiles self-assemble
into 2 by 2 arrays, the fluorophore and quencher will come into proximity and result in low fluo-
rescence intensity. When the arrays melt, the fluorophore and quencher will become separated and
result in increased fluorescence intensity. b, Melting graph showing relative fluorescence intensity
during heating and cooling of the 2 by 2 arrays. The fluorescence intensity was measured in a
Mx3005P QPCR system (Agilent Technologies). The sample was heated up from 25 to 45 ◦C at
5 sec/0.1◦C, from 45 to 55 ◦C at 30 sec/0.1◦C, held at 55 ◦C for 30 sec, cooled down from 55
to 45 ◦C at 30 sec/0.1◦C, and then cooled down from 45 to 25 ◦C at 5 sec/0.1◦C. Fluorescence
intensity was measured with 585 nm excitation wavelength and 610 nm emission wavelength. Each
data point shown in the graph was an average of all data points within the same degree. Note that
the fluorophore and quencher labeled staples were added to the edge design shown in Fig. 2b. They
introduced two additional stacking bonds to the interaction between tiles, with which we expect a
slightly increased melting temperature.
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5 Yield estimation

5.1 Assessing the accuracy of AFM-based yield estimation

How accurate AFM-based yield estimation is depends on if there exists a bias for the binding of
structures to mica surface, specifically based on their sizes. To explore that, we mixed 4 by 4 arrays
with monomers at an equal concentration of individual origami tiles (Supplementary Fig. 5a). If the
monomers have the same extent of binding as the 4 by 4 arrays, we expect the estimated yield of 4
by 4 arrays will decrease to half compared to the estimated yield without monomers, while greater
or smaller than half indicates less or more binding of the monomers, respectively. The AFM images
showed a bias of more monomers than 4 by 4 arrays on the mica surface (Supplementary Fig. 5b and
c). Our hypothesis is that monomers diffuse faster in solution and thus land faster on mica surfaces,
and once landed, the binding is strong enough for them to stay on mica after washing the surface
before imaging. This result suggests that the estimated yield could be lower (or higher) than the
actual yield if the off-target structures are mostly incomplete structures (or aggregations). Since
the off-target structures in the fractal arrays contain both incomplete and aggregated structures,
the AFM-based yield estimation should be reasonably accurate, in the sense that it is not obviously
lower or higher than the actual yield.

a

b c

Binding of monomers 
compared to that of 4 by 4 
arrays to mica surface

Yield

4 by 4 array 𝑥

4 by 4 array mixed with 
monomers at a 1: 1 ratio

less > Τ𝑥 2

same Τ= 𝑥 2

more < Τ𝑥 2

4 by 4 array 4 by 4 array + monomers

Yield: 44.70% Yield: 13.88%

Figure 5: Assessing the accuracy of AFM-based yield estimation. a, Three cases of scenarios
for estimating the yield of DNA origami arrays using AFM images. b, The yield of plain 4 by 4
arrays was estimated to be x = 44.70%. c, The yield of plain 4 by 4 arrays mixed with monomers
was estimated to be 13.88%, which is smaller than x/2.
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5.2 Plain arrays

a b c

Figure 6: AFM images of the plain arrays. a, A 10 by 10 µm image of 2 by 2 arrays. The
yield was estimated to be 92.81± 1.74%. b, A 30 by 30 µm image of 4 by 4 arrays. The yield was
estimated to be 47.91±1.76%. c, A 30 by 30 µm image of 8 by 8 arrays. The yield was estimated to
be 1.81±1.27%. The yield was determined as the total pixels in complete arrays of the designed size
(yellow pixels) divided by the total pixels above the threshold of background (blue pixels + yellow
pixels). The standard for identifying complete arrays is explained in ref.18 Supplementary Fig. S59.
The calculation was aided by a custom software tool.38 The error was calculated as p

√
1− p/

√
n,

where p is the estimated yield and n is the number of complete arrays in each image, treating the
yield as a Bernoulli probability.39

12
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5.3 Arrays with an example pattern

a b c

Figure 7: AFM images of the arrays with an example pattern of Mona Lisa. a, A 10 by
10 µm image of 2 by 2 arrays. The yield was estimated to be 94.22±1.22%. b, A 30 by 30 µm image
of 4 by 4 arrays. The yield was estimated to be 41.55± 1.26%, averaged over three images. c, A 30
by 30 µm image of 8 by 8 arrays. The yield was estimated to be 3.22± 1.00%, averaged over three
images. The yield was determined as the total pixels in complete arrays of the designed size (yellow
pixels) divided by the total pixels above the threshold of background (blue pixels + yellow pixels).
The standard for identifying complete arrays is explained in ref.18 Supplementary Fig. S59. The
calculation was aided by a custom software tool.38 The mean was calculated as p =

∑
ni/(

∑
ni/pi),

where pi is the estimated yield and ni is the number of complete arrays in each image. The error
was calculated as p

√
1− p/

√∑
ni, treating the yield as a Bernoulli probability.39
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6 Effect of design and experimental conditions

6.1 Rotation rule

In prior work, we have learned that surface modifications such as staple extensions can introduce
extra internal curvature to individual tiles and disrupt the formation of two-dimensional arrays
(Supplementary Figs. S14 and S15 in ref.18). We also showed that changing the orientation of tiles
relative to their neighbors can prevent the curvature from propagating globally and restore the
formation of two-dimensional arrays (Supplementary Fig. S19 in ref.18).

In this work, we specifically examined the effect of tile orientations in fractal assembly. When the
tiles had the same orientation as their neighbors, we observed aggregations and no target structures
(Supplementary Fig. 8a). When the tiles were rotated 90 degree compared to their neighbors,
we observed a substantially increased population of incomplete but correctly-formed structures
(Supplementary Fig. 8b). One example of these structures is shown in Supplementary Fig. 8c. We
thus concluded that the rotation rule is crucial for balancing out the curvature of individual tiles
in fractal assembly.

a b
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Figure 8: Rotation rule. a, Design diagram and AFM image of 8 by 8 fractal assembly with four
tiles or arrays having the same orientation in each stage of self-assembly. b, Design diagram and
AFM image of 8 by 8 fractal assembly with two tiles or arrays having the same orientation and
the other two being rotated 90 degree in each stage of self-assembly. c, Design diagram and AFM
image of an 8 by 8 fractal array with a specific pattern. The AFM image shows an 8 by 8 array
with one missing quadrant. The image was obtained from the same sample shown in (b).
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6.2 Annealing temperature

With the incomplete but correctly-formed structures, we decided to explore if an increased annealing
temperature will further melt the spurious interactions, make the missing quadrant available, and
promote the formation of complete structures. However, the increased annealing temperature of the
final stage resulted in scrambled structures (Supplementary Fig. 9c), indicating that the temperature
was too high and the 4 by 4 arrays melted into 2 by 2 arrays which then recombined into undesired
structures. We thus concluded that the annealing temperatures should be kept at 55, 45 and 35 ◦C
for the three sequential stages.

To reduce the gap of annealing temperatures and allow more sequential stages for creating larger
arrays, one would have to re-design the edges of the tiles to increase the melting temperatures of
the 4 by 4 and 8 by 8 arrays in fractal assembly (e.g. increase the number of edge staples from 4
and 2 to 6 and 4 for the second and third stages, respectively).

a c55 / 45 / 35 °Cb 55 / 45 / 40 °C

Figure 9: Annealing temperature. a, Design diagram of an 8 by 8 fractal array with a specific
pattern. b, AFM image of an incomplete array with three correctly-formed quadrants. The sample
was annealed from 55 to 20 ◦C, 45 to 20 ◦C and 35 to 20 ◦C in three sequential stages. c, AFM
image of incomplete and scrambled arrays. The sample was annealed from 55 to 20 ◦C, 45 to 20 ◦C
and 40 to 20 ◦C in three sequential stages. The white boxes highlight a few examples of structures
that are obviously scrambled.
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6.3 Non-interactive locations in the edge code

To look into the reasons for incomplete assemblies, we constructed the four quadrants of the 8 by 8
arrays separately. We discovered that three quadrants had fairly high yields (one example quadrant
was shown in Supplementary Fig. 10b), but one quadrant had a low yield and some tiles near the
corners and edges were deformed (Supplementary Fig. 10c). This quadrant originally had no surface
modifications, so we added some patterns to verify the locations of the tiles — we found that despite
being deformed, the tiles were incorporated into the desired locations for the few structures of the
target size.

We hypothesized that the deformation of the tiles was caused by the interactions between the
adjacent scaffold loops at the “0” locations in the edge codes. Since the edges for the interactions
between the four quadrants have the largest number of “0”s, the deformation is more likely to occur
at those locations. Because the interactions depend on the sequences of the scaffold loops, which
are different along the edges of the four distinct quadrants, they affected one quadrant much worse
than others.

To reduce the interactions between adjacent scaffold loops, we tested another implementation:
instead of leaving out a staple for each “0”, we used a staple with four nucleotides truncated from
both 5’ and 3’ ends. We hoped that given the full-length staples at the “1” locations, the truncations
at the “0” locations would be sufficient to reduce stacking interactions, but we were wrong. Four
copies of the same quadrant by itself self-assembled into an 8 by 8 array, as a result of the stacking
interactions between all “0”s (Supplementary Fig. 10d).

We thus concluded that we need a different method to reduce the deformation of tiles.
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Figure 10: Non-interactive locations in the edge code. a, The edge codes used in 8 by 8
fractal arrays. Design diagram and AFM images of b, one quadrant, c, another quadrant (the
white circle highlights an obvious deformation), and d, a third quadrant of the 8 by 8 array.
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6.4 Inert edges

In the following five subsections, we will focus on fractal assembly of 4 by 4 arrays with an example
pattern of Mona Lisa, and use it to figure out the design principles and experimental conditions
needed for successful creating uniquely-addressable DNA origami arrays.

First, after we failed to improve the structural integrity of the tiles by using truncated edge
staples instead of scaffold loops, as discussed in the previous subsection, we took a different approach
by reducing the number of edge staples with double hairpins in the inert edges near the exterior of
the array. We hypothesized that the deformation of the tiles were also facilitated by the imbalanced
edges: tiles near the exterior of the array had inert edges implemented with a full set of eleven
double-hairpin staples, while some of these tiles also had edges with just a few staples (four edge
staples for interactions between 2 by 2 arrays and two edge staples for interactions between 4
by 4 arrays). The large difference in the number of edge staples might have created structural
imbalance in these tiles, which together with the interactions between adjacent scaffold loops, led
to the observed tile deformation. To test this hypothesis, we reduced the number of double-hairpin
staples from eleven to five in all inert edges. Indeed, we observed that the yield of the 4 by 4 arrays
increased from 2.62% to 10.21% (Supplementary Fig. 11).

b c

a

Yield = 2.62% Yield = 10.21%

Figure 11: Inert edges. a, Design diagram of a 4 by 4 fractal assembly with an example pattern
of Mona Lisa. Edge diagram and AFM image of the 4 by 4 array with b, eleven double-hairpin
edge staples and c, five double-hairpin edge staples for each inert tile edge near the exterior of the
array. 18
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6.5 Bridge and interior staples near the seams

Starting from the following experiments, we adjusted the protocol to increase pipetting volumes and
thus improve pipetting accuracy. With the adjusted protocol, the yield of 4 by 4 arrays increased
from 10.21% (Supplementary Fig. 11c) to 16.11% (Supplementary Fig. 12b). To allow for more
pixels, we redesigned the bridge staples and interior staples near the seams, which fortunately led
to an even higher yield of 24.99%.

b c

a

Yield = 16.11% Yield = 24.99%

Figure 12: Bridge and interior staples near the seams. a, Design diagram of a 4 by 4 fractal
assembly with an example pattern of Mona Lisa. Cadnano diagram and AFM image of the 4 by 4
array with b, 112 pixels as designed in ref.18 and c, 136 pixels per tile.
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6.6 Interactive locations in the edge code

Next, to further improve the yield of fractal assembly, we explored an alternative design of edge
codes. In this design, we used different lengths of sticky ends for different stages, by which we
hoped to reduce undesired competition caused by incomplete structures from a previous stage and
promote desired self-assembly in the current stage.

We kept the second stage the same as before, but changed the edge code in the first stage to
eleven edge staples that each has a stacking bond and a one-nucleotide sticky end. Because the
total number of stacking bonds (consider a one-nucleotide sticky end as two stacking bonds and
a two-nucleotide sticky end as three stacking bonds) are very similar (33 for eleven edge staples
with one-nucleotide sticky ends and 32 for eight edge staples with two-nucleotide sticky ends), we
expected that the alternative and the original edge codes should have similar binding energies.

However, the yield dropped dramatically with the alternative edge code used in the first stage
(Supplementary Fig. 13). We suspect that the increased number of stacking bonds (from eight to
eleven) and the decreased interference of short overhangs (from two to one nucleotide) for forming
undesired stacking bonds significantly increased the spurious interactions within the first stage and
resulted in a large fraction of incorrectly-formed structures, which then aggregated in the second
stage. We thus concluded that reducing the spurious interactions within each stage of the fractal
assembly is much more important than reducing the competition caused by incomplete structures
from a previous stage.
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Figure 13: Interactive locations in the edge code. a, Design diagram of a 4 by 4 fractal
assembly with an example pattern of Mona Lisa. Design diagram and AFM image of the 4 by 4
array using edge staples with b, the same length of sticky ends and c, different lengths of sticky
ends in different stages.
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6.7 Automatic liquid handler

Finally, we moved on to test the same fractal assembly procedure carried out by an automatic
liquid handler. As there are approximately 3,000 pipetting events involved in creating a 4 by 4
fractal assembly, it is unsurprising that the procedure carried out by a human is prone to errors.
In contrast, once a human user writes a program to automatically generate a protocol file that
can be executed by a liquid handling robot and debugs the program, complex procedures can be
reliably carried out by the robot. Indeed, the yield of 4 by 4 fractal arrays increased from 24.99%
to 45.19% when all mixing steps were performed by an Echo 525 liquid handler. The time required
for completing the procedure was also reduced from days to minutes.

b c

a

Yield = 24.99% Yield = 45.19%

Manual pipetting Automatic pipetting by an Echo robot

Figure 14: Automatic liquid handler. a, Design diagram of a 4 by 4 fractal assembly with an
example pattern of Mona Lisa. AFM image of the 4 by 4 array created by b, manual pipetting and
c, automatic pipetting by an Echo 525 liquid handler.
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6.8 Plate sealing method

Before using a liquid handling robot, we annealed all DNA origami tiles and arrays in 0.5 mL tubes.
Because the liquid handling robot transfers all solution into a 96-well destination plate, to avoid
extra transferring steps, we explored a few methods for annealing the tiles and arrays in a 96-well
plate. It was surprising how the plate sealing method had a substantial effect on the yield of fractal
assembly: when the plate was sealed by a film with no heat applied, the yield dropped to about
0% (Supplementary Fig. 15c). We suspect that the yield suffered from severe evaporation and thus
large difference in concentrations of the individual tiles and arrays annealed in separate wells. We
then explored two other methods, sealing the plate with a mat (usually used for deep-well storage
plates) and cap strips. The sealing mat restored the yield of 4 by 4 arrays to 30.89% and the cap
strips to 41.55% (Supplementary Fig. 15d and e).
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b c

a

Yield = 0.33%

Yield = 30.89%

96-well plate + sealing film 0.5 mL tubes

d e

Yield = 41.55%

96-well plate + cap strips

Yield = 45.19%

96-well plate + sealing mat 

Figure 15: Plate sealing method. a, Design diagram of a 4 by 4 fractal assembly with an example
pattern of Mona Lisa. AFM image of the 4 by 4 array annealed in b, 0.5 mL tubes, c, a 96-well
plate sealed with a film (no-heat sealing), d, a 96-well plate sealed with a mat, e, a 96-well plate
sealed with cap strips.
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6.9 Annealing time

With all design principles and experimental conditions figured out using the 4 by 4 fractal assembly,
we proceeded with the 8 by 8 fractal assembly with an example pattern of Mona Lisa. In the 4 by
4 assembly, we used four times longer annealing time for the second stage than the first stage. This
was because the concentration of the self-assembly building blocks, after being combined from the
previous stage, decreased by four times. If we follow the same rule, the annealing time for the third
stage will be four times longer than the second stage, resulting in more than two days of annealing.
To justify the time requirement, we performed an experiment with the same annealing time for the
first and second stages for creating a quadrant of the 8 by 8 array, and compared the yield with the
longer annealing time. Indeed, the yield decreased from 48.72% to 32.02% (Supplementary Fig. 16).
We thus concluded that the longer annealing time for each sequential stage is necessary.

b c

a

Yield = 32.02%

stages 1 and 2: 2 min / 0.1 °C

Yield = 48.72%

stage 1: 2 min / 0.1 °C
stage 2: 8 min / 0.1 °C

Figure 16: Annealing time. a, Design diagram of a quadrant of the 8 by 8 fractal assembly with
an example pattern of Mona Lisa. AFM image of the quadrant annealed for b, 2 min per 0.1 ◦C in
the first stage and 8 min per 0.1 ◦C in the second stage, and c, 2 min per 0.1 ◦C in both stages.
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7 Analysis on 8 by 8 arrays with patterns

We estimated the correct tile incorporation rate for all complete 8 by 8 arrays with four distinct
patterns, each using six to thirty eight AFM images that contain one complete array per image.
The imaging artifacts were ignored (e.g. white blobs and smudges, streaks, and tiles damaged by
AFM tip). The mean was calculated as p =

∑
ni/
∑
mi, where mi = 64 is the total number of tiles

and ni is the number of correct tiles in each image. The error was calculated as p
√

1− p/
√∑

ni,
treating the tile incorporation as a Bernoulli probability.39
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7.1 The Mona Lisa

b

a

Figure 17: 8 by 8 arrays with a pattern of Mona Lisa. a, Design diagram. b, AFM images.
Tiles with an incorrect pattern are highlighted with a white square frame. The correct tile incor-
poration rate was estimated as 99.79 ± 0.09%, averaged over thirty eight images including the six
shown here.
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7.2 A rooster

b

a

Figure 18: 8 by 8 arrays with a pattern of a rooster. a, Design diagram. b, AFM images. Tiles
with an incorrect pattern are highlighted with a white square frame. The correct tile incorporation
rate was estimated as 99.74± 0.26%, averaged over the six images.
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7.3 A bacterium

b

a

Figure 19: 8 by 8 arrays with a pattern of a bacterium. a, Design diagram. b, AFM
images. Tiles with an incorrect pattern are highlighted with a white square frame. The correct tile
incorporation rate was estimated as 99.74± 0.26%, averaged over the six images.
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7.4 A circuit

b

a

Figure 20: 8 by 8 arrays with a pattern of a photoreceptor circuit.31 a, Design diagram.
b, AFM images. Tiles with an incorrect pattern are highlighted with a white square frame. The
correct tile incorporation rate was estimated as 98.96± 0.52%, averaged over the six images.
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8 Spin-filter purification

For some applications, it would be desirable to remove excess staples and negation strands from
the origami arrays after fractal assembly. To demonstrate that, we purified the 1 by 1 (monomers)
to 8 by 8 arrays using 0.5 mL and 100 kDa spin filters (Amicon, #UFC510096). Each sample
was filtrated six times, each time for 3 minutes at 13,000 relative centrifugal force (RCF). We
first used gel electrophoresis to analyze the samples before and after purification (Supplementary
Fig. 21a). It was clear, from the gel, that the excess staples and negation strands were successfully
removed in all samples after purification. The monomers and 2 by 2 arrays migrated at about the
same speed on the gel before and after purification, indicating that the structures remained intact
after purification. The 4 by 4 and 8 by 8 arrays either partially or completely stayed in the wells,
presumably because they were too large to enter the gel. Further, we used AFM to analyze the
structural integrity of the larger arrays (Supplementary Fig. 21b). The yield of the 4 by 4 arrays
decreased by roughly 5% after purification, but no more structural deformation was observed than
in unpurified samples.

a 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10Lane # Purification Sample

1 1kbp ladder

2

before

1x1 plain 

3 2x2 plain 

4 4x4 plain 

5 8x8 plain

6

after

1x1 plain 

7 2x2 plain 

8 4x4 plain 

9 8x8 plain

10 4x4 Mona Lisa

b

Yield = 35.43%Yield = 40.99%

before after after

staples and negation strands

monomers
2 by 2 arrays
4 by 4 arrays

4 by 4 and 8 by 8 arrays in wells

Figure 21: Spin-filter purification. a, 1 by 1 to 8 by 8 arrays before and after purification,
analyzed on a 0.5% agarose gel, ran at 80 mV for 2 hours. The orange box highlights an area where
we increased the contrast to show bands at low concentrations, which are otherwise not visible. b,
AFM images of the 4 by 4 arrays before and after purification.
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9 Strengthening the origami arrays after fractal assembly

In addition to removing excess staple and negation strands, in some cases, it would also be desirable
to separate the well-formed arrays from incomplete or aggregated structures. It has been shown
that multi-origami structures can be successfully separated based on their sizes, for example using
glycerol-gradient centrifugation or size-exclusion chromatography.27,40 A possible concern for ap-
plying these methods to separate fractal arrays is that the interactions between origami tiles may
be too weak to survive the separation process. To demonstrate that the origami arrays can be
strengthened after fractal assembly, we added a 10-fold excess of a full set of 44 edge staples, that
each have two stacking bonds, to the 4 by 4 arrays shown in Supplementary Fig. 22a. After incu-
bating the arrays with the additional edge staples at room temperature for 1 hour, we observed that
the staples were integrated into the origami tiles (Supplementary Fig. 22b). With these additional
edge staples, all interactions between origami tiles are increased from a total of 32 and 16 to 38 and
30 stacking bonds, respectively (each 2 nucleotide sticky end is counted as 3 stacking bonds). With
the same method, the weakest interactions in the 8 by 8 arrays could also be increased from 8 to
26 stacking bonds, which we believe will be strong enough to survive the separation process.

b

a a full set of 44 
edge staples

Figure 22: Strengthening the origami arrays after fractal assembly. a, Design diagram of
a 4 by 4 array strengthened by adding a full set of 44 edge staples with stacking bonds after the
fractal assembly. b, AFM images of the 4 by 4 array before and after strengthening. The white
boxes highlight the most obvious changes in the number of edge staples.
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10 Cadnano diagram
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Figure 23: Cadnano41 diagram of the square DNA origami tile with 136 interior staples.
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11 DNA sequences

Table S1: Interior staples.

Name Sequence

Reg-T1R01C6 TCATTTGCTAATAGTAGTAGCATT

Reg-T1R03C5 CAACTAAAGTACGGTGGGATGGCT

Reg-T1R03C6 TTTCATTGAGTAGATTTAGTTTCTATATTT

Reg-T1R04C5 TAGAGCTTCAGACCGGAAGCAAACCTATTATA

Reg-T1R05C6 GTCAGGAAGAGGTCATTTTTGCTCTGGAAG

Reg-T1R06C3 TTAAGAGGGTCCAATACTGCGGATAGCGAG

Reg-T1R06C5 GTCAGAAGATTGAATCCCCCTCAACCTCGTTT

Reg-T1R07C4 AAATATTCCAAAGCGGATTGCATCGAGCTTCA

Reg-T1R07C6 AACAGTTAGGTCTTTACCCTGATCCAACAG

Reg-T1R08C3 AGGCTTTTCAGGTAGAAAGATTCAATTACC

Reg-T1R08C5 ACCAGACGGAATACCACATTCAACGAGATGGT

Reg-T1R09C2 CATTATTAGCAAAAGAAGTTTTGC

Reg-T1R09C4 AGATTTAGACGATAAAAACCAAAAATCGTCAT

Reg-T1R09C6 ATACATACAACACTATCATAACATGCTTTA

Reg-T1R10C1 AGTCAGGACATAGGCTGGCTGACCTTTGAAAG

Reg-T1R10C3 TTATGCGATTGACAAGAACCGGAGGTCAAT

Reg-T1R10C5 TTAATTTCCAACGTAACAAAGCTGTCCATGTT

Reg-T1R11C2 GAGTAATCTTTTAAGAACTGGCTCCGGAACAA

Reg-T1R11C4 ACCCAAATAACTTTAATCATTGTGATCAGTTG

Reg-T1R11C6 GTGAATATAGTAAATTGGGCTTTAATGCAG

Reg-T1R12C3 CATAAGGGACACTAAAACACTCACATTAAA

Reg-T1R12C5 ACTTAGCCATTATACCAAGCGCGAGAGGACTA

Reg-T1R13C2 AAAAGAATAACCGAACTGACCAACTTCATCAA

Reg-T1R13C4 CCCCAGCGGGAACGAGGCGCAGACTATTCATT

Reg-T1R13C6 ACAACGGAAATCCGCGACCTGCCTCATTCA

Reg-T1R14C3 CGGGTAAAATTCGGTCGCTGAGGAATGACA

Reg-T1R14C5 AAGACTTTGGCCGCTTTTGCGGGATTAAACAG

Reg-T1R15C4 GAGTTAAATTCATGAGGAAGTTTCTCTTTGAC

Reg-T1R15C6 CTCAGCAGGCTACAGAGGCTTTAACAAAGT

Reg-T1R16C5 CTTGATACTGAAAATCTCCAAAAAAGCGGAGT

Reg-T1R17C4 TTTCACGTCGATAGTTGCGCCGACCTTGCAGG

Reg-T1R17C6 CAAAAGGTTCGAGGTGAATTTCTCGTCACC

Reg-T1R19C6 GTTAGTAACTTTCAACAGTTTCAAAGGCTC

Reg-T1R21C5 CCATGTACCGTAACACTGTAGCATTCCACAGATTCCAGAC

Reg-T2R01C6 ACCCTCATTCAGGGATAGCAAGCC

Reg-T2R03C5 TTAGGATTAGCGGGGTGGAACCTA

Reg-T2R03C6 GTACCAGGTATAGCCCGGAATAGAACCGCC

Reg-T2R04C5 TTATTCTGACTGGTAATAAGTTTTAACAAATA

Reg-T2R05C6 CAGTGCCCCCCCTGCCTATTTCTTTGCTCA

Reg-T2R06C3 GTCTCTGACACCCTCAGAGCCACATCAAAA
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Name Sequence

Reg-T2R06C5 AATCCTCAACCAGAACCACCACCAGCCCCCTT

Reg-T2R07C4 GAGCCGCCTTAAAGCCAGAATGGAGATGATAC

Reg-T2R07C6 GCCAGCAGCCTTGATATTCACAAACGGGGT

Reg-T2R08C3 TCACCGGAAACGTCACCAATGAATTATTCA

Reg-T2R08C5 ATTAGCGTCCGTAATCAGTAGCGAATTGAGGG

Reg-T2R09C2 AGGCCGGAACCAGAGCCACCACCG

Reg-T2R09C4 TAGCAGCATTGCCATCTTTTCATACACCCTCA

Reg-T2R09C6 AGTTTGCGCATTTTCGGTCATAGAGCCGCC

Reg-T2R10C1 GCCATTTGCAAACGTAGAAAATACCTGGCATG

Reg-T2R10C3 TTAAAGGTACATATAAAAGAAACAAACGCA

Reg-T2R10C5 AGGGAAGGATAAGTTTATTTTGTCAGCCGAAC

Reg-T2R11C2 AGGTGGCAGAATTATCACCGTCACCATTAGCA

Reg-T2R11C4 ACCACGGATAAATATTGACGGAAAACCATCGA

Reg-T2R11C6 TAGAAAAGGCGACATTCAACCGCAGAATCA

Reg-T2R12C3 ATAATAACTCAGAGAGATAACCCGAAGCGC

Reg-T2R12C5 AAAGTTACGCCCAATAATAAGAGCAGCCTTTA

Reg-T2R13C2 CGCTAATAGGAATACCCAAAAGAAATACATAA

Reg-T2R13C4 TGAGTTAACAGAAGGAAACCGAGGGCAAAGAC

Reg-T2R13C6 ATGAAATGAAAAGTAAGCAGATACAATCAA

Reg-T2R14C3 ATTAGACGGAGCGTCTTTCCAGAGCTACAA

Reg-T2R14C5 CAGAGAGAACAAAATAAACAGCCATTAAATCA

Reg-T2R15C4 TGCCAGTTATAACATAAAAACAGGACAAGAAT

Reg-T2R15C6 ATCCCAAAAAAATGAAAATAGCAAGAAACA

Reg-T2R16C5 AGATTAGTATATAGAAGGCTTATCCAAGCCGT

Reg-T2R17C4 CAAATCAGTGCTATTTTGCACCCAGCCTAATT

Reg-T2R17C6 TAAGAACGGAGGTTTTGAAGCCTATTATTT

Reg-T2R19C6 CTTATCACTCATCGAGAACAAGCGGTATTC

Reg-T2R21C5 AGCTAATGCAGAACGCGAGAAAAATAATATCCTGTCTTTC

Reg-T3R01C6 AGAATATCAGACGACGACAATAAA

Reg-T3R03C5 TCATATGCGTTATACAAAGGCGTT

Reg-T3R03C6 CCAGTATGAATCGCCATATTTAGTAATAAG

Reg-T3R04C5 AAATAAGAACTTTTTCAAATATATCTGAGAGA

Reg-T3R05C6 ATTTCATGACCGTGTGATAAATAATTCTTA

Reg-T3R06C3 TATATAACGTAAATCGTCGCTATATTTGAA

Reg-T3R06C5 CTACCTTTAGAATCCTTGAAAACAAGAAAACA

Reg-T3R07C4 TTTCCCTTTTAACCTCCGGCTTAGCAAAGAAC

Reg-T3R07C6 GCTTAGAATCAAAATCATAGGTTTTAGTTA

Reg-T3R08C3 TTACCTTTACAATAACGGATTCGCAAAATT

Reg-T3R08C5 AAATTAATACCAAGTTACAAAATCCTGAATAA

Reg-T3R09C2 CGGGAGAATTTAATGGAAACAGTA

Reg-T3R09C4 CTTTGAATTACATTTAACAATTTCTAATTAAT

Reg-T3R09C6 GCGAATTATGAAACAAACATCATAGCGATA

Reg-T3R10C1 GTAGATTTGTTATTAATTTTAAAAAACAATTC

Reg-T3R10C3 ATTTGCACCATTTTGCGGAACAAATTTGAG

35

WWW.NATURE.COM/NATURE | 35

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature24655



Name Sequence

Reg-T3R10C5 TGGAAGGGAGCGGAATTATCATCAACTAATAG

Reg-T3R11C2 AACATTATGTAAAACAGAAATAAATTTTACAT

Reg-T3R11C4 CCAGAAGGTTAGAACCTACCATATCCTGATTG

Reg-T3R11C6 ATTATCAGTTTGGATTATACTTGCGCAGAG

Reg-T3R12C3 GATTTAGATTGCTGAACCTCAAAGTATTAA

Reg-T3R12C5 ATTAGAGCAATATCTGGTCAGTTGCAGCAGAA

Reg-T3R13C2 GCATCACCAGTATTAGACTTTACAGTTTGAGT

Reg-T3R13C4 CCTCAATCCGTCAATAGATAATACAGAAACCA

Reg-T3R13C6 ACAGTTGTTAGGAGCACTAACATATTCCTG

Reg-T3R14C3 CACCGCCTGAAAGCGTAAGAATACATTCTG

Reg-T3R14C5 GATAAAACTTTTTGAATGGCTATTTTCACCAG

Reg-T3R15C4 AGACAATAAGAGGTGAGGCGGTCATATCAAAC

Reg-T3R15C6 ATGCGCGTACCGAACGAACCACGCAAATCA

Reg-T3R16C5 TCACACGATGCAACAGGAAAAACGGAAGAACT

Reg-T3R17C4 CCAGCCATCCAGTAATAAAAGGGACGTGGCAC

Reg-T3R17C6 AATACCTATTTACATTGGCAGAAGTCTTTA

Reg-T3R19C6 TTAACCGTCACTTGCCTGAGTACTCATGGA

Reg-T3R21C5 CTAAACAGGAGGCCGATAATCCTGAGAAGTGTCACGCAAA

Reg-T4R01C6 GCGCGTACTTTCCTCGTTAGAATC

Reg-T4R03C5 AAAGCCGGCGAACGTGTGCCGTAA

Reg-T4R03C6 GGAAGGGGGCAAGTGTAGCGGTGCTACAGG

Reg-T4R04C5 AGCACTAAAAAGGGCGAAAAACCGAAATCCCT

Reg-T4R05C6 GGCGATGTTTTTGGGGTCGAGGGCGAGAAA

Reg-T4R06C3 TGAGTGTTCAGCTGATTGCCCTTGCGCGGG

Reg-T4R06C5 TATAAATCGAGAGTTGCAGCAAGCGTCGTGCC

Reg-T4R07C4 GGCCCTGAAAAAGAATAGCCCGAGCGTGGACT

Reg-T4R07C6 CTGGTTTGTTCCGAAATCGGCATCTATCAG

Reg-T4R08C3 GAGAGGCGACAACATACGAGCCGCTGCAGG

Reg-T4R08C5 AGCTGCATAGCCTGGGGTGCCTAAGTAAAACG

Reg-T4R09C2 AATTCCACGTTTGCGTATTGGGCG

Reg-T4R09C4 AAGTGTAATAATGAATCGGCCAACCACCGCCT

Reg-T4R09C6 CTAACTCCCAGTCGGGAAACCTGGTCCACG

Reg-T4R10C1 GAATTCGTGCCATTCGCCATTCAGTTCCGGCA

Reg-T4R10C3 TCGACTCTGAAGGGCGATCGGTGCGGCCTC

Reg-T4R10C5 ACGGCCAGTACGCCAGCTGGCGAACATCTGCC

Reg-T4R11C2 ACTGTTGGAGAGGATCCCCGGGTACCGCTCAC

Reg-T4R11C4 TTCGCTATTGCCAAGCTTGCATGCGAAGCATA

Reg-T4R11C6 GTGCTGCCCCAGTCACGACGTTTGAGTGAG

Reg-T4R12C3 AGGAAGATCATTAAATGTGAGCGTTTTTAA

Reg-T4R12C5 AGTTTGAGATTCTCCGTGGGAACAATTCGCAT

Reg-T4R13C2 TTCATCAACGCACTCCAGCCAGCTGCTGCGCA

Reg-T4R13C4 CCCGTCGGGGGACGACGACAGTATCGGGCCTC

Reg-T4R13C6 ATTGACCCGCATCGTAACCGTGAGGGGGAT

Reg-T4R14C3 CCAATAGGAAACTAGCATGTCAAGGAGCAA
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Name Sequence

Reg-T4R14C5 TAAATTTTTGATAATCAGAAAAGCACAAAGGC

Reg-T4R15C4 ACCCCGGTTGTTAAATCAGCTCATAGTAACAA

Reg-T4R15C6 CAGGAAGTAATATTTTGTTAAAAACGGCGG

Reg-T4R16C5 TATCAGGTAAATCACCATCAATATCAATGCCT

Reg-T4R17C4 AGACAGTCCATTGCCTGAGAGTCTTCATATGT

Reg-T4R17C6 ACCGTTCATTTTTGAGAGATCTCCCAAAAA

Reg-T4R19C6 CCTTTATCATATATTTTAAATGGATATTCA

Reg-T4R21C5 AATCATACAGGCAAGGCAGAGCATAAAGCTAAGGGAGAAG
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Table S2: Bridge staples.

Name Sequence

Bri-T1R02C5 GATACATTTCGCTTTTTTGACCCTGTAAT

Bri-T1R05C4 AAGCGAACAATTGCTGAATATAATGCTGTATTTTTTTGTGAGAAAGGCCGG

Bri-T1R07C2 TGGATAGCAAGCCCGATTTTTAATCGTAAACGCCAT

Bri-T1R08C1 CAGAGGGGGTTTTGCCTTCCTGTAGCCAGCT

Bri-T1R12C1 AGGACAGATGATTTTTTCACCAGTAGCACCATTACCGACTTGA

Bri-T1R14C2 TGCCACTACTTTTTTTGCCACCCTC

Bri-T1R16C3 ACAACCATTTTTTCATACATGGCTTTTAAGCGCA

Bri-T1R18C5 GAGAATAGAAAGGAACAACTATTTTCTCAAGAGAAGGA

Bri-T1R19C5 TGTCGTCTCAGCCCTCATATTTTTTTCGCCACCCTCAGGTGTATC

Bri-T2R02C5 ACCGTACTCAGGTTTTTGATCTAAAGTTT

Bri-T2R05C4 AGGAGTGTAAACATGAAAGTATTAAGAGGCTTTTTTTGCGAATAATAATTT

Bri-T2R07C2 AGAACCGCATTTACCGTTTTACCGATATATACGTAA

Bri-T2R08C1 GAACCGCCTCTTTACCTAAAACGAAAGAGGC

Bri-T2R10C0 GGAATTAGAGCTTTTTTTTCAGACCAGGCGCGTTGGGAAGATTTTTTTTCCAGGCAAAGC

Bri-T2R12C1 ATTAAGACTCCTTTTTAATATACAGTAACAGTACCGAAATTGC

Bri-T2R14C2 AACTGAACATTTTTTTTGAATAACC

Bri-T2R16C3 TTTTATCTTTTTTATCCAATCGCAAGAGTTGGGT

Bri-T2R18C5 TTTTATTTTCATCGTAGGAATTTTTAGCCTGTTTAGTA

Bri-T2R19C5 TAATCGGCCATCCTAATTTTTTTTTTTTTTCGAGCCAACAACGCC

Bri-T3R02C5 AACATGTAATTTTTTTTGAAACCAATCAA

Bri-T3R05C4 GCGAGAAAATAAACACCGGAATCATAATTATTTTTTTCGCCCAATAGCAAG

Bri-T3R07C2 TTGCTTCTTATATGTATTTTACGCTAACGGAGAATT

Bri-T3R08C1 CATAAATCAATTTAGTCAGAGGGTAATTGAG

Bri-T3R12C1 GACAACTCGTATTTTTTCCTGTGTGAAATTGTTATCCGAGCTC

Bri-T3R14C2 GCCACGCTGTTTTTTTACCAGTGAG

Bri-T3R16C3 GCCAACATTTTTTCCACTATTAAAGAAATAGGGT

Bri-T3R18C5 CAAACTATCGGCCTTGCTGGTTTTTGAGCTTGACGGGG

Bri-T3R19C5 CTGTCCATTTTTATAATCATTTTTTTCTTAATGCGCCCACGCTGC

Bri-T4R02C5 GCGTAACCACCATTTTTGAGTAAAAGAGT

Bri-T4R05C4 CCAACGTCATCGGAACCCTAAAGGGAGCCCTTTTTTTGAACAATATTACCG

Bri-T4R07C2 ACGGGCAAGTTCCAGTTTTTTCTGACCTGCAACAGT

Bri-T4R08C1 CCAGGGTGGTTTTGCAAATGAAAAATCTAAA

Bri-T4R10C0 AATCATGGTCATTTTTTTTTTTGCCCGAACTCAGGTTTAACTTTTTTTTCAGTATGTTAG

Bri-T4R12C1 CCGCTTCTGGTTTTTTCGTTAATAAAACGAACTAAATTATACC

Bri-T4R14C2 CAAAAATAATTTTTTTTGTTTAGAC

Bri-T4R16C3 ACAAGAGTTTTTTTCGCGTTTTAATTCAAAAAGA

Bri-T4R18C5 GAGTAATGTGTAGGTAAAGATTTTTTGTTTTAAATATG

Bri-T4R19C5 ACTTTTGCATCGGTTGTACTTTTTTTAACCTGTTTAGGACCATTA
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Table S3: Inert edge staples.

Name Sequence

Edg-T1R02C7-DHP GTGTCGTAGACACTCCCAATTCTGCGAACCCATATAACAGTTGATGTGTCGTAGACAC

Edg-T1R06C7-DHP GTGTCGTAGACACCCATAAATCAAAAATCCAGAAAACGAGAATGAGTGTCGTAGACAC

Edg-T1R10C7-DHP GTGTCGTAGACACGAAACACCAGAACGAGAGGCTTGCCCTGACGAGTGTCGTAGACAC

Edg-T1R14C7-DHP GTGTCGTAGACACGAACGAGGGTAGCAACGCGAAAGACAGCATCGGTGTCGTAGACAC

Edg-T1R18C7-DHP GTGTCGTAGACACGGGATTTTGCTAAACAAATGAATTTTCTGTATGTGTCGTAGACAC

Edg-T2R02C7-DHP GTGTCGTAGACACGAGAGGGTTGATATAAGCGGATAAGTGCCGTCGTGTCGTAGACAC

Edg-T2R06C7-DHP GTGTCGTAGACACGCAGGTCAGACGATTGTTGACAGGAGGTTGAGGTGTCGTAGACAC

Edg-T2R10C7-DHP GTGTCGTAGACACGCGCCAAAGACAAAAGTTCATATGGTTTACCAGTGTCGTAGACAC

Edg-T2R14C7-DHP GTGTCGTAGACACTTTTTTGTTTAACGTCTCCAAATAAGAAACGAGTGTCGTAGACAC

Edg-T2R18C7-DHP GTGTCGTAGACACTAAACCAAGTACCGCATTCCAAGAACGGGTATGTGTCGTAGACAC

Edg-T3R02C7-DHP GTGTCGTAGACACAGTAGGGCTTAATTGAAAAGCCAACGCTCAACGTGTCGTAGACAC

Edg-T3R06C7-DHP GTGTCGTAGACACAGTCAATAGTGAATTTTTAAGACGCTGAGAAGGTGTCGTAGACAC

Edg-T3R10C7-DHP GTGTCGTAGACACCAATATAATCCTGATTGATGATGGCAATTCATGTGTCGTAGACAC

Edg-T3R14C7-DHP GTGTCGTAGACACACATCGCCATTAAAAAAACTGATAGCCCTAAAGTGTCGTAGACAC

Edg-T3R18C7-DHP GTGTCGTAGACACTTGATTAGTAATAACATTGTAGCAATACTTCTGTGTCGTAGACAC

Edg-T4R02C7-DHP GTGTCGTAGACACCGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAGGTGTCGTAGACAC

Edg-T4R06C7-DHP GTGTCGTAGACACATCCTGTTTGATGGTGGCCCCAGCAGGCGAAAGTGTCGTAGACAC

Edg-T4R10C7-DHP GTGTCGTAGACACGTAACGCCAGGGTTTTAAGGCGATTAAGTTGGGTGTCGTAGACAC

Edg-T4R14C7-DHP GTGTCGTAGACACTTTAAATTGTAAACGTATTGTATAAGCAAATAGTGTCGTAGACAC

Edg-T4R18C7-DHP GTGTCGTAGACACAAATTTTTAGAACCCTTTCAACGCAAGGATAAGTGTCGTAGACAC

39

WWW.NATURE.COM/NATURE | 39

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature24655



Table S4: Active edge staples.

Name Sequence

Edg-2nt-Rec-T1C7R02 TCCCAATTCTGCGAACCCATATAACAGTTG

Edg-2nt-Rec-T1C7R04 ATTGCTCCTTTTGATATTAGAGAGTACCTT

Edg-2nt-Rec-T1C7R06 CCATAAATCAAAAATCCAGAAAACGAGAAT

Edg-2nt-Rec-T1C7R08 CGAGGCATAGTAAGAGACGCCAAAAGGAAT

Edg-2nt-Rec-T1C7R12 CTGATAAATTGTGTCGAGATTTGTATCATC

Edg-2nt-Rec-T1C7R14 GAACGAGGGTAGCAACGCGAAAGACAGCAT

Edg-2nt-Rec-T1C7R16 GGTTTATCAGCTTGCTAGCCTTTAATTGTA

Edg-2nt-Rec-T1C7R18 GGGATTTTGCTAAACAAATGAATTTTCTGT

Edg-2nt-Rec-T2C7R02 GAGAGGGTTGATATAAGCGGATAAGTGCCG

Edg-2nt-Rec-T2C7R04 GTATAAACAGTTAATGTTGAGTAACAGTGC

Edg-2nt-Rec-T2C7R06 GCAGGTCAGACGATTGTTGACAGGAGGTTG

Edg-2nt-Rec-T2C7R08 TAGCGCGTTTTCATCGCTTTAGCGTCAGAC

Edg-2nt-Rec-T2C7R12 CCGAAGCCCTTTTTAAAGCAATAGCTATCT

Edg-2nt-Rec-T2C7R14 TTTTTTGTTTAACGTCTCCAAATAAGAAAC

Edg-2nt-Rec-T2C7R16 AACCTCCCGACTTGCGGCGAGGCGTTTTAG

Edg-2nt-Rec-T2C7R18 TAAACCAAGTACCGCATTCCAAGAACGGGT

Edg-2nt-Rec-T3C7R02 AGTAGGGCTTAATTGAAAAGCCAACGCTCA

Edg-2nt-Rec-T3C7R04 AATGGTTTGAAATACCCTTCTGACCTAAAT

Edg-2nt-Rec-T3C7R06 AGTCAATAGTGAATTTTTAAGACGCTGAGA

Edg-2nt-Rec-T3C7R08 TGAGCAAAAGAAGATGATTCATTTCAATTA

Edg-2nt-Rec-T3C7R12 GTTATCTAAAATATCTAAAGGAATTGAGGA

Edg-2nt-Rec-T3C7R14 ACATCGCCATTAAAAAAACTGATAGCCCTA

Edg-2nt-Rec-T3C7R16 TCGTCTGAAATGGATTACATTTTGACGCTC

Edg-2nt-Rec-T3C7R18 TTGATTAGTAATAACATTGTAGCAATACTT

Edg-2nt-Rec-T4C7R02 CGGGCGCTAGGGCGCTAAGAAAGCGAAAGG

Edg-2nt-Rec-T4C7R04 ATCACCCAAATCAAGTGCCCACTACGTGAA

Edg-2nt-Rec-T4C7R06 ATCCTGTTTGATGGTGGCCCCAGCAGGCGA

Edg-2nt-Rec-T4C7R08 GCTCACTGCCCGCTTTACATTAATTGCGTT

Edg-2nt-Rec-T4C7R12 CGTTGGTGTAGATGGGGTAATGGGATAGGT

Edg-2nt-Rec-T4C7R14 TTTAAATTGTAAACGTATTGTATAAGCAAA

Edg-2nt-Rec-T4C7R16 GCCGGAGAGGGTAGCTTAGCTGATAAATTA

Edg-2nt-Rec-T4C7R18 AAATTTTTAGAACCCTTTCAACGCAAGGAT

Edg-2nt-G4-T1C7R02 AATCCCAATTCTGCGAACCCATATAACAGTTGAT

Edg-2nt-G4-T1C7R04 ATATTGCTCCTTTTGATATTAGAGAGTACCTTTA

Edg-2nt-G4-T1C7R06 TACCATAAATCAAAAATCCAGAAAACGAGAATGA

Edg-2nt-G4-T1C7R08 CACGAGGCATAGTAAGAGACGCCAAAAGGAATTA

Edg-2nt-G4-T1C7R12 GCCTGATAAATTGTGTCGAGATTTGTATCATCGC

Edg-2nt-G4-T1C7R14 AAGAACGAGGGTAGCAACGCGAAAGACAGCATCG

Edg-2nt-G4-T1C7R16 CCGGTTTATCAGCTTGCTAGCCTTTAATTGTATC

Edg-2nt-G4-T1C7R18 AGGGGATTTTGCTAAACAAATGAATTTTCTGTAT

Edg-2nt-G2-T3C7R02 ATAGTAGGGCTTAATTGAAAAGCCAACGCTCAAC

Edg-2nt-G2-T3C7R04 CGAATGGTTTGAAATACCCTTCTGACCTAAATTT
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Name Sequence

Edg-2nt-G2-T3C7R06 GAAGTCAATAGTGAATTTTTAAGACGCTGAGAAG

Edg-2nt-G2-T3C7R08 TATGAGCAAAAGAAGATGATTCATTTCAATTACC

Edg-2nt-G2-T3C7R12 TGGTTATCTAAAATATCTAAAGGAATTGAGGAAG

Edg-2nt-G2-T3C7R14 AGACATCGCCATTAAAAAAACTGATAGCCCTAAA

Edg-2nt-G2-T3C7R16 CCTCGTCTGAAATGGATTACATTTTGACGCTCAA

Edg-2nt-G2-T3C7R18 TCTTGATTAGTAATAACATTGTAGCAATACTTCT

Edg-2nt-G1-T2C7R02 ATGAGAGGGTTGATATAAGCGGATAAGTGCCGTC

Edg-2nt-G1-T2C7R04 TCGTATAAACAGTTAATGTTGAGTAACAGTGCCC

Edg-2nt-G1-T2C7R06 CGGCAGGTCAGACGATTGTTGACAGGAGGTTGAG

Edg-2nt-G1-T2C7R08 GCTAGCGCGTTTTCATCGCTTTAGCGTCAGACTG

Edg-2nt-G1-T2C7R12 TACCGAAGCCCTTTTTAAAGCAATAGCTATCTTA

Edg-2nt-G1-T2C7R14 GATTTTTTGTTTAACGTCTCCAAATAAGAAACGA

Edg-2nt-G1-T2C7R16 TAAACCTCCCGACTTGCGGCGAGGCGTTTTAGCG

Edg-2nt-G1-T2C7R18 ATTAAACCAAGTACCGCATTCCAAGAACGGGTAT

Edg-2nt-G3-T4C7R02 CTCGGGCGCTAGGGCGCTAAGAAAGCGAAAGGAG

Edg-2nt-G3-T4C7R04 AAATCACCCAAATCAAGTGCCCACTACGTGAACC

Edg-2nt-G3-T4C7R06 AAATCCTGTTTGATGGTGGCCCCAGCAGGCGAAA

Edg-2nt-G3-T4C7R08 AGGCTCACTGCCCGCTTTACATTAATTGCGTTGC

Edg-2nt-G3-T4C7R12 CCCGTTGGTGTAGATGGGGTAATGGGATAGGTCA

Edg-2nt-G3-T4C7R14 AGTTTAAATTGTAAACGTATTGTATAAGCAAATA

Edg-2nt-G3-T4C7R16 TTGCCGGAGAGGGTAGCTTAGCTGATAAATTAAT

Edg-2nt-G3-T4C7R18 ACAAATTTTTAGAACCCTTTCAACGCAAGGATAA
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Table S5: Interior staples with extensions.

Name Sequence

ssEx-Reg-T1R01C6 TCATTTGCTAATAGTAGTAGCATTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R03C5 CAACTAAAGTACGGTGGGATGGCTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R03C6 TTTCATTGAGTAGATTTAGTTTCTATATTTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R04C5 TAGAGCTTCAGACCGGAAGCAAACCTATTATATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R05C6 GTCAGGAAGAGGTCATTTTTGCTCTGGAAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R06C3 TTAAGAGGGTCCAATACTGCGGATAGCGAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R06C5 GTCAGAAGATTGAATCCCCCTCAACCTCGTTTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R07C4 AAATATTCCAAAGCGGATTGCATCGAGCTTCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R07C6 AACAGTTAGGTCTTTACCCTGATCCAACAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R08C3 AGGCTTTTCAGGTAGAAAGATTCAATTACCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R08C5 ACCAGACGGAATACCACATTCAACGAGATGGTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R09C2 CATTATTAGCAAAAGAAGTTTTGCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R09C4 AGATTTAGACGATAAAAACCAAAAATCGTCATTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R09C6 ATACATACAACACTATCATAACATGCTTTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R10C1 AGTCAGGACATAGGCTGGCTGACCTTTGAAAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R10C3 TTATGCGATTGACAAGAACCGGAGGTCAATTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R10C5 TTAATTTCCAACGTAACAAAGCTGTCCATGTTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R11C2 GAGTAATCTTTTAAGAACTGGCTCCGGAACAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R11C4 ACCCAAATAACTTTAATCATTGTGATCAGTTGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R11C6 GTGAATATAGTAAATTGGGCTTTAATGCAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R12C3 CATAAGGGACACTAAAACACTCACATTAAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R12C5 ACTTAGCCATTATACCAAGCGCGAGAGGACTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R13C2 AAAAGAATAACCGAACTGACCAACTTCATCAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R13C4 CCCCAGCGGGAACGAGGCGCAGACTATTCATTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R13C6 ACAACGGAAATCCGCGACCTGCCTCATTCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R14C3 CGGGTAAAATTCGGTCGCTGAGGAATGACATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R14C5 AAGACTTTGGCCGCTTTTGCGGGATTAAACAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R15C4 GAGTTAAATTCATGAGGAAGTTTCTCTTTGACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R15C6 CTCAGCAGGCTACAGAGGCTTTAACAAAGTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R16C5 CTTGATACTGAAAATCTCCAAAAAAGCGGAGTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R17C4 TTTCACGTCGATAGTTGCGCCGACCTTGCAGGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R17C6 CAAAAGGTTCGAGGTGAATTTCTCGTCACCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R19C6 GTTAGTAACTTTCAACAGTTTCAAAGGCTCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T1R21C5 CCATGTACCGTAACACTGTAGCATTCCACAGATTCCAGACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R01C6 ACCCTCATTCAGGGATAGCAAGCCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R03C5 TTAGGATTAGCGGGGTGGAACCTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R03C6 GTACCAGGTATAGCCCGGAATAGAACCGCCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R04C5 TTATTCTGACTGGTAATAAGTTTTAACAAATATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R05C6 CAGTGCCCCCCCTGCCTATTTCTTTGCTCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R06C3 GTCTCTGACACCCTCAGAGCCACATCAAAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R06C5 AATCCTCAACCAGAACCACCACCAGCCCCCTTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R07C4 GAGCCGCCTTAAAGCCAGAATGGAGATGATACTTTTTTTTTTTTTTTTTTTT
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Name Sequence

ssEx-Reg-T2R07C6 GCCAGCAGCCTTGATATTCACAAACGGGGTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R08C3 TCACCGGAAACGTCACCAATGAATTATTCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R08C5 ATTAGCGTCCGTAATCAGTAGCGAATTGAGGGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R09C2 AGGCCGGAACCAGAGCCACCACCGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R09C4 TAGCAGCATTGCCATCTTTTCATACACCCTCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R09C6 AGTTTGCGCATTTTCGGTCATAGAGCCGCCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R10C1 GCCATTTGCAAACGTAGAAAATACCTGGCATGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R10C3 TTAAAGGTACATATAAAAGAAACAAACGCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R10C5 AGGGAAGGATAAGTTTATTTTGTCAGCCGAACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R11C2 AGGTGGCAGAATTATCACCGTCACCATTAGCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R11C4 ACCACGGATAAATATTGACGGAAAACCATCGATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R11C6 TAGAAAAGGCGACATTCAACCGCAGAATCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R12C3 ATAATAACTCAGAGAGATAACCCGAAGCGCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R12C5 AAAGTTACGCCCAATAATAAGAGCAGCCTTTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R13C2 CGCTAATAGGAATACCCAAAAGAAATACATAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R13C4 TGAGTTAACAGAAGGAAACCGAGGGCAAAGACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R13C6 ATGAAATGAAAAGTAAGCAGATACAATCAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R14C3 ATTAGACGGAGCGTCTTTCCAGAGCTACAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R14C5 CAGAGAGAACAAAATAAACAGCCATTAAATCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R15C4 TGCCAGTTATAACATAAAAACAGGACAAGAATTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R15C6 ATCCCAAAAAAATGAAAATAGCAAGAAACATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R16C5 AGATTAGTATATAGAAGGCTTATCCAAGCCGTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R17C4 CAAATCAGTGCTATTTTGCACCCAGCCTAATTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R17C6 TAAGAACGGAGGTTTTGAAGCCTATTATTTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R19C6 CTTATCACTCATCGAGAACAAGCGGTATTCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T2R21C5 AGCTAATGCAGAACGCGAGAAAAATAATATCCTGTCTTTCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R01C6 AGAATATCAGACGACGACAATAAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R03C5 TCATATGCGTTATACAAAGGCGTTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R03C6 CCAGTATGAATCGCCATATTTAGTAATAAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R04C5 AAATAAGAACTTTTTCAAATATATCTGAGAGATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R05C6 ATTTCATGACCGTGTGATAAATAATTCTTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R06C3 TATATAACGTAAATCGTCGCTATATTTGAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R06C5 CTACCTTTAGAATCCTTGAAAACAAGAAAACATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R07C4 TTTCCCTTTTAACCTCCGGCTTAGCAAAGAACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R07C6 GCTTAGAATCAAAATCATAGGTTTTAGTTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R08C3 TTACCTTTACAATAACGGATTCGCAAAATTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R08C5 AAATTAATACCAAGTTACAAAATCCTGAATAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R09C2 CGGGAGAATTTAATGGAAACAGTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R09C4 CTTTGAATTACATTTAACAATTTCTAATTAATTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R09C6 GCGAATTATGAAACAAACATCATAGCGATATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R10C1 GTAGATTTGTTATTAATTTTAAAAAACAATTCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R10C3 ATTTGCACCATTTTGCGGAACAAATTTGAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R10C5 TGGAAGGGAGCGGAATTATCATCAACTAATAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R11C2 AACATTATGTAAAACAGAAATAAATTTTACATTTTTTTTTTTTTTTTTTTTT
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Name Sequence

ssEx-Reg-T3R11C4 CCAGAAGGTTAGAACCTACCATATCCTGATTGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R11C6 ATTATCAGTTTGGATTATACTTGCGCAGAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R12C3 GATTTAGATTGCTGAACCTCAAAGTATTAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R12C5 ATTAGAGCAATATCTGGTCAGTTGCAGCAGAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R13C2 GCATCACCAGTATTAGACTTTACAGTTTGAGTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R13C4 CCTCAATCCGTCAATAGATAATACAGAAACCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R13C6 ACAGTTGTTAGGAGCACTAACATATTCCTGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R14C3 CACCGCCTGAAAGCGTAAGAATACATTCTGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R14C5 GATAAAACTTTTTGAATGGCTATTTTCACCAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R15C4 AGACAATAAGAGGTGAGGCGGTCATATCAAACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R15C6 ATGCGCGTACCGAACGAACCACGCAAATCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R16C5 TCACACGATGCAACAGGAAAAACGGAAGAACTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R17C4 CCAGCCATCCAGTAATAAAAGGGACGTGGCACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R17C6 AATACCTATTTACATTGGCAGAAGTCTTTATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R19C6 TTAACCGTCACTTGCCTGAGTACTCATGGATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T3R21C5 CTAAACAGGAGGCCGATAATCCTGAGAAGTGTCACGCAAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R01C6 GCGCGTACTTTCCTCGTTAGAATCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R03C5 AAAGCCGGCGAACGTGTGCCGTAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R03C6 GGAAGGGGGCAAGTGTAGCGGTGCTACAGGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R04C5 AGCACTAAAAAGGGCGAAAAACCGAAATCCCTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R05C6 GGCGATGTTTTTGGGGTCGAGGGCGAGAAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R06C3 TGAGTGTTCAGCTGATTGCCCTTGCGCGGGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R06C5 TATAAATCGAGAGTTGCAGCAAGCGTCGTGCCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R07C4 GGCCCTGAAAAAGAATAGCCCGAGCGTGGACTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R07C6 CTGGTTTGTTCCGAAATCGGCATCTATCAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R08C3 GAGAGGCGACAACATACGAGCCGCTGCAGGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R08C5 AGCTGCATAGCCTGGGGTGCCTAAGTAAAACGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R09C2 AATTCCACGTTTGCGTATTGGGCGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R09C4 AAGTGTAATAATGAATCGGCCAACCACCGCCTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R09C6 CTAACTCCCAGTCGGGAAACCTGGTCCACGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R10C1 GAATTCGTGCCATTCGCCATTCAGTTCCGGCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R10C3 TCGACTCTGAAGGGCGATCGGTGCGGCCTCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R10C5 ACGGCCAGTACGCCAGCTGGCGAACATCTGCCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R11C2 ACTGTTGGAGAGGATCCCCGGGTACCGCTCACTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R11C4 TTCGCTATTGCCAAGCTTGCATGCGAAGCATATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R11C6 GTGCTGCCCCAGTCACGACGTTTGAGTGAGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R12C3 AGGAAGATCATTAAATGTGAGCGTTTTTAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R12C5 AGTTTGAGATTCTCCGTGGGAACAATTCGCATTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R13C2 TTCATCAACGCACTCCAGCCAGCTGCTGCGCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R13C4 CCCGTCGGGGGACGACGACAGTATCGGGCCTCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R13C6 ATTGACCCGCATCGTAACCGTGAGGGGGATTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R14C3 CCAATAGGAAACTAGCATGTCAAGGAGCAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R14C5 TAAATTTTTGATAATCAGAAAAGCACAAAGGCTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R15C4 ACCCCGGTTGTTAAATCAGCTCATAGTAACAATTTTTTTTTTTTTTTTTTTT
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Name Sequence

ssEx-Reg-T4R15C6 CAGGAAGTAATATTTTGTTAAAAACGGCGGTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R16C5 TATCAGGTAAATCACCATCAATATCAATGCCTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R17C4 AGACAGTCCATTGCCTGAGAGTCTTCATATGTTTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R17C6 ACCGTTCATTTTTGAGAGATCTCCCAAAAATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R19C6 CCTTTATCATATATTTTAAATGGATATTCATTTTTTTTTTTTTTTTTTTT

ssEx-Reg-T4R21C5 AATCATACAGGCAAGGCAGAGCATAAAGCTAAGGGAGAAGTTTTTTTTTTTTTTTTTTTT

45

WWW.NATURE.COM/NATURE | 45

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature24655



Table S6: Negation strands.

Name Sequence

Neg-T1R00C7 TTTTCAGCTCGCGCCCTAGAATTGATGCCACC

Neg-T1R02C7 ATCAACTGTTATATGGGTTCGCAGAATTGGGA

Neg-T1R04C7 TAAAGGTACTCTCTAATATCAAAAGGAGCAAT

Neg-T1R06C7 TCATTCTCGTTTTCTGGATTTTTGATTTATGG

Neg-T1R08C7 TAATTCCTTTTGGCGTCTCTTACTATGCCTCG

Neg-T1R10C7 TCGTCAGGGCAAGCCTCTCGTTCTGGTGTTTC

Neg-T1R12C7 GCGATGATACAAATCTCGACACAATTTATCAG

Neg-T1R14C7 CGATGCTGTCTTTCGCGTTGCTACCCTCGTTC

Neg-T1R16C7 GATACAATTAAAGGCTAGCAAGCTGATAAACC

Neg-T1R18C7 ATACAGAAAATTCATTTGTTTAGCAAAATCCC

Neg-T1R20C7 ACTGGTGACGAAACTCAGGCGTTGTAGTTTGT

Neg-T2R00C7 CTGAGGGTGGCGGTTCAATGAGGGTGGTGGCT

Neg-T2R02C7 GACGGCACTTATCCGCTTATATCAACCCTCTC

Neg-T2R04C7 GGGCACTGTTACTCAACATTAACTGTTTATAC

Neg-T2R06C7 CTCAACCTCCTGTCAACAATCGTCTGACCTGC

Neg-T2R08C7 CAGTCTGACGCTAAAGCGATGAAAACGCGCTA

Neg-T2R10C7 TGGTAAACCATATGAACTTTTGTCTTTGGCGC

Neg-T2R12C7 TAAGATAGCTATTGCTTTAAAAAGGGCTTCGG

Neg-T2R14C7 TCGTTTCTTATTTGGAGACGTTAAACAAAAAA

Neg-T2R16C7 CGCTAAAACGCCTCGCCGCAAGTCGGGAGGTT

Neg-T2R18C7 ATACCCGTTCTTGGAATGCGGTACTTGGTTTA

Neg-T2R20C7 ATTGTTGATAAACAGGTGTTCAGGACTTATCT

Neg-T3R00C7 CTTTTGTCGGTACTTTGACAGAATTACTTTAC

Neg-T3R02C7 GTTGAGCGTTGGCTTTTCAATTAAGCCCTACT

Neg-T3R04C7 AAATTTAGGTCAGAAGGGTATTTCAAACCATT

Neg-T3R06C7 CTTCTCAGCGTCTTAAAAATTCACTATTGACT

Neg-T3R08C7 GGTAATTGAAATGAATCATCTTCTTTTGCTCA

Neg-T3R10C7 ATGAATTGCCATCATCAATCAGGATTATATTG

Neg-T3R12C7 CTTCCTCAATTCCTTTAGATATTTTAGATAAC

Neg-T3R14C7 TTTAGGGCTATCAGTTTTTTTAATGGCGATGT

Neg-T3R16C7 TTGAGCGTCAAAATGTAATCCATTTCAGACGA

Neg-T3R18C7 AGAAGTATTGCTACAATGTTATTACTAATCAA

Neg-T3R20C7 GTCTAAAATCCCTTTACTGGCGTACCGTTCCT

Neg-T4R00C7 GTCAAAGCAACCATAGCACGTTATACGTGCTC

Neg-T4R02C7 CTCCTTTCGCTTTCTTAGCGCCCTAGCGCCCG

Neg-T4R04C7 GGTTCACGTAGTGGGCACTTGATTTGGGTGAT

Neg-T4R06C7 TTTCGCCTGCTGGGGCCACCATCAAACAGGAT

Neg-T4R08C7 GCAACGCAATTAATGTAAAGCGGGCAGTGAGC

Neg-T4R10C7 CCAACTTAATCGCCTTAAAACCCTGGCGTTAC

Neg-T4R12C7 TGACCTATCCCATTACCCCATCTACACCAACG

Neg-T4R14C7 TATTTGCTTATACAATACGTTTACAATTTAAA

Neg-T4R16C7 ATTAATTTATCAGCTAAGCTACCCTCTCCGGC
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Name Sequence

Neg-T4R18C7 TTATCCTTGCGTTGAAAGGGTTCTAAAAATTT

Neg-T4R20C7 ATTTTGCTAATTCTTTGAGGCTTTATTGCTTA
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