
Programmable disorder in random DNA tilings
Grigory Tikhomirov1†, Philip Petersen2† and Lulu Qian1,3*

Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent
stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA
tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general
forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the
micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we
demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth
directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for
generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection
of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and
creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures.

Understanding the function of stochasticity in biological
systems has been a long-standing challenge1–3. Two main
principles have been recognized. First, stochastic algorithms

allow simpler genetic programmes compared with deterministic
algorithms, as seen in randomly expressed genes in olfactory recep-
tor neurons4, for example. Second, stochasticity can give rise to
combinatorial diversity, such as that seen in the transmembrane
domain proteins essential for neural wiring5. Taking inspiration
from the stochasticity in biological systems and applying the prin-
ciples in engineered cellular and molecular systems has enabled sub-
stantial technological advances and deepened our understanding of
natural algorithms. One example is the ‘brainbow’ technique for
visualizing complex biological neural networks6 and another is the
original demonstration of DNA molecules performing non-trivial
computation7. In both examples, stochasticity was the key to creat-
ing combinatorial diversity and to providing simple algorithms for
complex tasks.

Here we demonstrate that besides molecular information proces-
sing, in structural DNA nanotechnology, stochastic algorithms can
also provide simple solutions for creating complex patterns in mol-
ecular systems that have combinatorial diversity and programmable
features. We refer to the random-yet-controlled properties of these
molecular patterns as programmable disorder.

From the first unnatural DNA nanostructure8 to DNA origami9,
rationally designed DNA nanostructures have been increasingly
used as scaffolds to organize diverse molecules such as proteins10,
organic dyes11, metal nanoparticles12,13 and polymers14. Because of
the high programmability and spatial precision of the DNA nanos-
tructures, they hold promise for arranging functional components
into molecular devices and for advancing a variety of technologies,
including molecular electronics, plasmonics and photonics15.
However, to move from functional components to complex net-
works of molecular devices that can actually carry out sophisticated
tasks, it is necessary to assemble DNA nanostructures at a much
larger scale, using DNA tilings.

There are so far two strategies for constructing large-scale arrays of
DNA tiles: periodic arrays and algorithmic arrays. Periodic arrays are
easier to construct and have been demonstrated with both small
DNA tiles16–20 and DNA origami tiles21–23, but the pattern complexity

is limited. Algorithmic arrays can create complex global patterns by
using DNA tiles that encode a specific set of rules defined by a cellular
automaton24–26. Each tile can interact with other tiles with two inputs
and two outputs. The growth has to start from a seed and continue to
follow the input-to-output direction. The correct growth of an array
relies on competition among multiple types of tiles. It is critical that
tiles with one matching input do not attach successfully but tiles
with two matching inputs do. Because of these constraints, algorithmic
arrays require delicate experimental conditions: the desired growth only
takes place at a very specific temperature, and any change in sequences
or modifications to the DNA strands could disrupt the growth.
Although algorithmic arrays have been constructed with small DNA
tiles, arrays of DNA origami tiles have not yet been demonstrated.

There are several distinct advantages of origami arrays compared
with small DNA tile arrays. Because of the larger size, origami tiles
have more programmable interactions, including multiple sticky
ends21 and geometries27. Geometry could also give rise to more
sophisticated control of structural reconfiguration28. Most impor-
tantly, origami tiles are large enough to accommodate complex
internal patterns for organizing molecules, and thus arrays of
origami tiles can be used to construct networks of sophisticated
molecular components. Here, internal patterns will play yet
another role.

To scale up the complexity and diversity of origami arrays, we
present a strategy using random DNA tilings, which are as easy to
construct as periodic arrays but with substantially more control
over the complexity of the global patterns. The strategy is guided
by stochastic Truchet tiling29,30. ATruchet tile has a rotationally asym-
metric pattern that is designed to continue into neighbouring tiles.
Complex patterns can be easily generated by allowing a random
orientation of a tile at each location in an array. Generalizing the
theory of classic Truchet tiling, we developed a framework for creating
programmable disorder in random DNA tilings (Fig. 1). We chose
three example tasks: creating random loops (that is, closed lines with
no branches), mazes (lines with loops and branches) and trees (lines
with branches but not loops), to demonstrate how the properties of
global patterns can be controlled by local rules. Loop31, maze32–34

and tree35–37 structures widely exist in natural systems across multiple
scales. We defined a set of rules for programming the pattern on a
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tile, the random choice among different tiles and the different
choices at specific locations on a grid. Many of these rules can be
implemented using DNA origami tiles with just a single type of
edge design and different surface patterns. In the process of tiles
self-assembling into arrays, four errors (that is, four unmatched
sides) are required for an incorrect tile attachment to be locked in
place, which ensures that the implementation is experimentally
robust with a high barrier for errors.

Implementation of Truchet arrays
A classic Truchet tile (Fig. 2a), which we refer to as the arc tile, has
two possible orientations created by any 90° rotation. In an array of
arc tiles with a random choice of the two orientations at each
location, the lines will continue through tiles, either becoming
loops of varying sizes or exiting from an edge of the array.
Interestingly, the arc tile is related to a fully packed loop model,
which has been studied extensively in theoretical physics, with
applications to the quantum phase transitions in magnets and to
Anderson localization problems38–40.

To create Truchet arrays, we designed a square DNA origami
tile with maximally continuous surface area for implementing a
wide range of patterns on a single tile (Fig. 2b). The tile is com-
posed of four isosceles triangles (Supplementary Note 2.1 and
Supplementary Fig. 2) and has a four-fold rotational symmetry,
such that it can adopt an unbiased choice of any of the four orien-
tations when self-assembled into an array. Short single-stranded
domains were used in staples that bridge the seams between the
four triangles (Fig. 2b, top inset), and in scaffolds at the locations
where the scaffold makes a turn from one helix to another near the
interior edge of the triangles (Fig. 2b, bottom inset). To calculate

lengths of these single-stranded domains that should not strain
the DNA structure, we developed a three-dimensional (3D)
model at the level of each base pair (Fig. 2c; Supplementary
Fig. 3 and Supplementary Note 2.2). We explored two designs of
bridge staples and chose the one that provided more structural
stability (Supplementary Figs 4–6). To verify the formation of
tiles as monomers, we modified the edge staples to minimize
the interactions between tiles (Supplementary Figs 7–9). High-
resolution atomic force microscope (AFM) images confirmed
that the square tile was created with over 94% yield, clearly
showing four triangles joined together (Fig. 2d; Supplementary
Figs 10 and 11).

To encourage the formation of large 2D DNA origami arrays in
solution, we tuned tile–tile interactions by programming the
eleven staples along each edge. It is desirable to have a weak
binding energy at the lower temperatures at which the tiles are
structurally stable. The weak binding energy allows the tiles to
rearrange themselves and avoid kinetic traps at undesired con-
figurations during self-assembly. It is also desirable to have suffi-
ciently high specificity, such that perfect alignment between tiles
is much preferred over any misalignment that would encourage
aggregation rather than crystal growth. DNA blunt-end stacking,
which is the interaction between the ends of two double helices,
has been shown to provide a weak binding energy for program-
ming the interactions between 2D and 3D DNA origami struc-
tures27,28 with specificity encoded in the geometry. We used
both geometry and very short sticky ends to encode specificity,
and explored several edge designs to achieve a sufficiently weak
binding energy and a sufficiently high specificity simultaneously
(Supplementary Figs 12–14).
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Figure 1 | Summary of programmable disorder in random DNA tilings. The rules for programming random DNA tilings (the syntax is explained in Methods
and the automated design steps are illustrated in Supplementary Fig. 1), the properties of patterns that can be controlled in self-assembled DNA origami
arrays and the properties of the DNA origami tiles used in experimental implementations. The sizes of loops, mazes and trees are defined on the basis of the
area that they cover (see Methods). The orange or grey box around each rule corresponds to the properties of the DNA origami tiles required for
implementing the rule, which also corresponds to the properties of patterns that can be controlled using the rules.
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We observed that if the binding energy was too strong or if the
tiles had curvature, the assemblies tended to form tubes instead of
2D arrays (Supplementary Figs 15–17 and 22). Similar to the ‘cor-
rugated’ design introduced in self-assembled arrays of cross-
shaped DNA tiles17,18,21, we used a global self-correction mechanism
that forced the tiles to attach to each other with a 90° rotation and
prevented the accumulation of curvature during self-assembly
(Supplementary Figs 18 and 19). With the edge design shown in
Fig. 2e, we demonstrated robust crystallization that is more reliable
and consistently produces larger crystals than previous techniques21.
Unbounded arrays up to 16 μm × 16 μm, consisting of tens of
thousands of tiles, were self-assembled (Supplementary Figs 20
and 21) with a melting temperature close to 35°C (Supplementary
Figs 23 and 24).

To create the classic Truchet arrays at the nanometre scale, we
constructed square origami tiles with double-stranded staple

extensions in the pattern of two arcs (Supplementary Figs 26 and
27). Because the edge design defined a fixed relative orientation of
tiles, two types of tiles were annealed separately with distinct sets
of extended staples for the two orientations of the arc pattern, and
then mixed together to self-assemble into arrays. Arrays with a
variety of fully packed loops were created (Fig. 2f; Supplementary
Fig. 29), and the choice of arc orientation at all locations was
close to random (Fig. 2g; Supplementary Fig. 30).

The use of multiple tiles for multiple pattern orientations is an
acceptable but inefficient approach for implementing Truchet
arrays. We further designed extended edges to remove the sequence
dependence between edge staples and the scaffold, and created
random arc arrays with a single tile that was truly rotatable with
identical sequences on four edges (Supplementary Fig. 31).
However, extended edges increased the distance between staple
extensions on adjacent tiles and resulted in less continuous patterns.
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Figure 2 | Implementation of Truchet arrays. a, A classic Truchet tile design with two arcs. Example arrays are shown with a random choice of the two
possible tile orientations at each location. b, Design of a symmetric square DNA origami tile composed of four identical triangles. A mini version (12 × 12
helices) of the actual origami tile (22 × 22 helices) is shown with a circular scaffold (black), edge staples (blue) that can be programmed for specific binding
between one tile and another, interior staples (green) that fold the scaffold into four triangles and bridge staples (orange) that zip up the seams between the
triangles. The orientation of each edge is defined as the orientation of the scaffold path, and labelled as a line pointing from the 5′ end to the 3′ end. The
single-stranded domains of the staple bridges and scaffold loops are shown as dotted lines, with one example of each shown as bases in the circular insets.
c, 3D model of the square DNA origami tile (full size, 22 × 22 helices) with double-stranded staple extensions in a pattern of two arcs. With this model, we
calculated the lengths of all single-stranded domains that should not strain the DNA structure. d, Tile abstraction (left), edge design (middle) and AFM
image (right) of square DNA origami tiles as monomers. All edge staples were modified with double hairpins to prevent interactions between tiles. e, Array
abstraction, tile abstraction, edge design and AFM image of unbounded square DNA origami arrays (left to right). The edge design consisted of four edge
staples, each having a stacking bond and a two-nucleotide sticky end. Other locations on the edge were left as scaffold loops. Most of the unbounded arrays
were created with an overnight anneal, and a few of the largest ones were annealed for two days to a week (Methods and Supplementary Fig. 25). f, AFM
images of random Truchet arrays of DNA origami tiles. Each original image (left) was coloured to show continuous paths on the double-stranded staple
extensions (right). The method of colouring is shown in Supplementary Fig. 28. All images here and in Figs 3–5 show an area of 10 × 10 tiles, which is
approximately 880 × 880 nm2. g, Analysis of arc orientations in random Truchet arrays. The numbers of all 16 possible patterns in a 2 × 2 neighbourhood of
tiles were calculated on the basis of a single crystal domain in a 2.8 μm × 2.8 μm AFM image (Supplementary Fig. 30). With a total of 456 neighbourhoods,
each of the 16 patterns appeared 28.5 ± 4.9 times (6.25% ± 1.07%).
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Programming the tile
To demonstrate the programmability of random arrays, we explored
how to design the local tile patterns that control the properties of the
global array pattern. The classic Truchet tile creates loops, but to
create mazes, branching points are needed. This can be accom-
plished by designing how the lines connect within a tile and
among neighbouring tiles. For example, a diagonal tile will intro-
duce branching points at the centre of a 2 × 2 neighbourhood
(Fig. 3a). In these arrays, both three-way and four-way junctions
are possible. The distances between adjacent junctions vary, with
shorter distances being more likely than longer distances.

When branching points are introduced within a tile instead of
across tiles, it is possible to remove four-way junctions and allow
a fixed distance between adjacent junctions (for example, with a
‘T’ tile, Fig. 3b). In random T tile arrays, there are four possible
tile orientations, but all junctions occur at the centre of a tile so
there can only be three-way junctions. All tiles have a junction at
the centre and thus the adjacent junctions on connected branches
are always one tile apart.

There are two ways of looking at the global patterns created on
random arrays: following the lines or following the areas between
the lines, which can exhibit distinct properties. By inverting a tile
design, area patterns of one tile that have the same properties as
line patterns of another tile are created, and vice versa. For
example, the arc tile can be seen as an inverse of the diagonal tile,
and vice versa (Fig. 3c; Supplementary Fig. 32a,c).

Besides the branching rules, the proximity between mazes are
also qualitatively different: in random arrays of diagonal and arc
tiles, the adjacent mazes are interwoven; in random arrays of T
tiles, it is easy to find a large rectangular area occupied by a single
maze. Very small mazes occur within a large maze, but mazes
with comparable sizes are separated.

Quantitatively, the size distribution of diagonal and arc mazes is
significantly different from the T mazes. Numerical simulations
suggested that the size of the largest maze on random arrays of T
tiles is expected to be larger than that of diagonal and arc tiles,
with a wider distribution (Fig. 3d). Unlike the diagonal tile arrays,
the area patterns on T tile arrays are also mazes, but with a
smaller expected size (Supplementary Fig. 32b,d,e).

We constructed random T tile arrays using the same tile shown
in Fig. 2e but with four types of surface modifications for the four
orientations of the T pattern. AFM images showed maze-like pat-
terns in both arc and T tile arrays (Fig. 3e; Supplementary Figs
33–35). The expected branching properties, network proximity
and difference in maze size were observed (Supplementary Figs
36 and 37): the arc mazes had three-way and four-way junctions
that were one to six tiles apart, and the T mazes had only three-
way junctions that were all one tile apart. The arc mazes were
interwoven and the T mazes were mostly separated. The largest
arc maze in a 10 × 10 tile area was 39.4 ± 4.5 and the largest T
maze was 77.8 ± 9.5, agreeing with the expected sizes of 42.3
and 75.3.
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Figure 3 | Programming the tile. a,b, Diagonal tile (a) and T tile (b) designs that both generate random maze-like patterns but with different branching rules
(the syntax is explained in Methods). c, As an inverse of the diagonal tile, the arc tile can be used to create area mazes instead of line mazes. The largest
maze in each example random array is highlighted in orange. d, Histogram of the largest maze size on random 10 × 10 arrays, generated from numerical
simulations with one million independent trials. The size of a diagonal maze or a T maze is determined as the number of tiles in the maze. The size of an arc
maze is determined as the size of its equivalent diagonal maze. e, AFM images of random mazes on arc and T tile arrays. Each original AFM image (left)
was coloured to show continuous paths on or between the staple extensions (right).
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In the maze examples, only straight lines are needed to define the
branching rules (for example, the arc tile can be replaced by two
straight lines that connect the same points and the configuration
of the mazes would stay the same). But if we also consider how
the lines are connected in terms of the exact curvature, more
complex geometries can be created (Supplementary Fig. 38).

Programming the grid
The next task was to remove the loops from the mazes and create
trees. Taking T mazes as an example, the simplest loops can be
created in a 2 × 2 neighbourhood, using T tiles of all four

orientations or just two orientations that are rotated 180° from
each other. Allowing globally only two T tile orientations that are
90° rotated from each other will prohibit the formation of loops
(Fig. 4a), but the direction of growth of the trees is always along
the diagonal of the arrays, considering the corner tile as the root.

Is it possible to create trees that grow in all directions? Yes, and it
can be accomplished by designing a grid that allows the tiles to
adopt specific orientations at different locations. For example, on
a grid with four distinct orientations of tiles in any 2 × 2 neighbour-
hood (Fig. 4b), any single type of T tile will create square loops of
size 4. Any two types of T tile are either in phase (that is, alternating
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Figure 4 | Programming the grid. a, A T tile design that generates random tree-like patterns with a specific growth direction. d and w are the depth and
width of a tree, respectively. b, A four-orientation grid that allows trees to grow in all directions (the syntax is explained in Methods). Arrows indicate the
specific orientations of a tile at given locations (for example, the down arrow indicates the orientation of a tile as it is shown, the left arrow indicates the
orientation of a tile that is rotated 90° clockwise from what it is shown and so on). One example random array is shown when two types of T tiles (in black
and orange) are alone (left of =) and mixed together (right of =), either in phase (not a tree) or out of phase (a tree with a square root). c,d, Two T tile
designs on the four-orientation grid that both generate random tree-like patterns but with different lengths of straight branches. For the convenience of
analysing these trees, we assume that each array is on a torus. Individual trees in each example random array are shown in distinct colours. The root of each
tree is filled with the same colour as the branches. e, Histogram of the largest tree size on random 10 × 10 arrays, generated from numerical simulations with
one million independent trials. The size of a tree is determined by the number of tiles in the tree. The peak at size 100 of T90 trees indicates arrays with a
single tree, which is a result of the array size being limited to 10 × 10. A smooth and complete tail of the size distribution occurred with simulations of
16 × 16 arrays (Supplementary Fig. 39f). f, AFM images of random trees on T90 and T180 tile arrays. Each original AFM image (left) was coloured to show
continuous paths on the staple extensions (right).
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choices in adjacent 2 × 2 neighbourhoods exist to connect all of the
loops together) or out of phase (that is, preserving one loop would
necessarily break the adjacent loops).

Allowing each tree to have a single loop, considered as the root,
random trees that grow in all directions can be created on the four-
orientation grid with two types of T tile that are out of phase, rotated
by either 90° or 180° from each other (Fig. 4c,d). The sizes of the
roots will vary but larger roots will be less likely than smaller
roots. Numerical simulations of random 10 × 10 arrays suggested
that more than 80% of the T90 trees and more than 99% of the
T180 trees will have a ‘square root’, which is the smallest possible
loop (Supplementary Fig. 39d).

Other than the difference in the percentage of square roots, the two
types of trees also have distinct branching properties. In T90 trees, the
lengths of straight branches vary, with shorter branches more likely
than longer branches (Fig. 4c). In T180 trees, starting from a junction,
there are only two possible lengths for straight branches (Fig. 4d). The
sizes of the trees are different as well: the size of the largest trees on
random T90 arrays is expected to be larger than that on random
T180 arrays, with a wider distribution (Fig. 4e).

The edge design of the tile shown in Fig. 2e naturally implements
the four-orientation grid, because the two pairs of matching sticky
ends on the adjacent sides of the square force the tiles to attach to
each other with the same relative orientations as specified in
Fig. 4b. Using this tile with two orientations of surface modifications

in a T pattern, we constructed two types of random trees on T90 and
T180 arrays (Fig. 4f; Supplementary Figs 40 and 41). They grew in
all directions, each demonstrating the expected branching proper-
ties: the T90 trees in a 10 × 10 tile area had straight branches of
varying lengths from 1.5 to 8.5, and the T180 trees only had straight
branches of length 1.5 and 2. The expected difference in size was
also observed (Supplementary Fig. 42): the largest T90 tree was
54.7 ± 11.7 and the largest T180 tree was 33.4 ± 11.9, agreeing
with the expected sizes of 58.0 and 36.7.

To gain greater control of the global patterns, more complex
grids can be defined using multiple types of tile with distinct edge
designs, at the cost of increased design and experimental challenges,
which we will discuss in a later section.

Programming the random choice
In previous sections, we achieved equal probabilities of pattern
orientations by mixing the corresponding tiles in an equimolar
ratio. Now, simply by changing this tile ratio, we can tune the size
distributions of global patterns more precisely (Supplementary
Fig. 43). For example, the expected size of T90 trees depends on
the probability of the two T pattern orientations (Fig. 5a). When
p = 0 or 1 (where p is the probability of the illustrated configuration
of branching points or distance between adjacent branching points)
all trees will have just a square root with four leafs, and thus the
expected size is exactly 4. When p increases from 0 or decreases
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Figure 5 | Programming the random choice. a, Random trees with the size controlled by the probabilities of two tiles with distinct pattern orientations (the
syntax is explained in Methods). b, Random loops with the size of loops and number of crossings controlled by the probabilities of two tiles with distinct
patterns (the syntax is explained in Methods). For the convenience of analysing the trees and loops, we assume that each array is on a torus. Expected size
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c,d, AFM images and analysis of trees and loops on random arrays with p =0, 1/3 and 1/2.
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from 1, the trees will grow larger, and the expected size will reach a
maximum at p = 0.5.

Moreover, by introducing tiles with multiple patterns and
varying their probabilities, we can gain control over other features
of global patterns (Supplementary Fig. 44). For example, the prob-
ability of a cross tile introduces a controlled number of crossings in
random loops (Fig. 5b). When p = 1, all loops will be circles on the
four-orientation grid. When p decreases, longer loops will appear
with more crossings. However, when p continues to decrease,
loops will become shorter as the number of turns decreases.
When p = 0, crossings will be on every tile and all loops will be
straight lines of length n on all n by n arrays.

We constructed random trees with the two types of T tile, and
random loops with the arc tiles and cross tiles, mixed together at
ratios of p and 1 − p, with three probabilities (Fig. 5c,d;
Supplementary Figs 45 and 47). As expected, when p = 0, all trees
were square roots with four leafs. When p = 1/3 and 1/2, larger
trees were observed with decreasing number of trees on each
array. The average tree size was 17.6 ± 5.8 when p = 1/3 and
25.9 ± 8.0 when p = 1/2, agreeing with the expected sizes 16.7 and

26.7, respectively (Supplementary Fig. 46). Also as expected, all
loops were straight lines when p = 0. Compared with p = 1/2,
longer and fewer loops were observed when p = 1/3. The total
number of crossings was 70.3 ± 7.4 when p = 1/3 and 48.7 ± 4.4
when p = 1/2, also agreeing with the expected numbers 67 and 50,
respectively (Supplementary Fig. 48).

Programming a finite grid
As we have shown, with just a single type of tile in terms of the edge
design, and with different types of surface modifications, complex
patterns with desired properties can be created on unbounded
DNA origami arrays. A fundamentally different approach for con-
trolling the complexity of global patterns is to control the size of
the grid by creating finite DNA origami arrays. Because a finite
grid requires multiple types of tile with distinct edge designs, it
also allows specific pattern configurations at some locations that
differ from other locations.

We explored two designs for creating finite origami arrays, each
exhibiting an important feature for scaling up in size: one
encourages complete assemblies over incomplete ones, and
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another allows an asymptotically smaller number of distinct tiles
and edges (Supplementary Figs 49–51). The tiles are fully connected
in the first design, and connected like a comb structure in the second
design, similar to previously proposed designs for self-assembled
squares41. Both array designs have a four-fold rotational symmetry.

We established four criteria for designing a large set of distinct
edges (Supplementary Note 8.2 and Supplementary Fig. 52), and
constructed finite arrays of sizes 3 × 3, 4 × 4 and 5 × 5 (Fig. 6a;
Supplementary Figs 53–58). The yield (Supplementary Fig. 59) of
fully connected arrays was determined to be 15.6, 15.0 and 32.4%,
respectively (Supplementary Figs 60–62), and the yield of comb-
connected arrays was determined to be 8.0, 6.7 and 1.3%
(Supplementary Figs 63–65). Our results suggest that the advantage
of complete over incomplete assemblies is crucial for scaling up the
size of finite origami arrays.

An important design principle, which we refer to as one-pot
staged self-assembly (Fig. 6b), contributed to the high yield of the
finite arrays. We used different strengths of the binding energy for
specific edge interactions to encourage sequential stages of self-
assembly during annealing of all types of tile in one pot. This strat-
egy divides a more complex self-assembly process into multiple
simpler stages, and thus reduces the potential spurious interactions
that could occur at any given time. Compared with previous
methods for constructing finite shapes using origami tile–tile inter-
actions9,42, our approach enabled a substantially higher efficiency of
the conversion from origami monomers into target assemblies.
These structures were also larger and demonstrated better scalability
than arrays created with other methods, including organizing
origami tiles using scaffold frames43.

Using the fully connected design for 5 × 5 arrays, we created arc
mazes of 440 × 440 nm2 in size (Supplementary Fig. 66).
Theoretically, if we look at the mazes from a fixed view point,
over 30 million (that is, 225 = 33,554,432) distinct mazes can be
found on the arrays in one test tube. The average number
of circles was 1.0 ± 0.6, agreeing with the expected number
(m − 1) × (n − 1) × (14/2) in a randomm × n array of the arc tiles44.

To demonstrate not only controlled size of a finite grid, but also
controlled pattern configurations at specific locations, we created
random mazes with designed entrances and exits (Fig. 6c;
Supplementary Fig. 67). In these arrays, the exterior tiles had a
fixed arc orientation, while the interior tiles remained a random
choice between the two arc orientations. Taking rotational sym-
metry into consideration, 28 = 256 distinct mazes exist, all of
which should have a path from the designed entrance to exit—
such a path was found in all 5 × 5 arrays shown in the AFM images.

The rule that we introduced for programming a finite grid is not
limited to a square-shaped grid. In general, finite grids with more
complex shapes can be used to create patterns with well-defined
boundaries (Supplementary Fig. 68).

Conclusions
We developed a framework for creating programmable disorder in
random DNA tilings and created DNA nanostructures with a com-
binatorial diversity of complex patterns, including random loops,
mazes and trees. These self-assembled patterns exploit both deter-
ministic and random features, trading some amount of the
control offered by deterministic processes for the diversity and
simple algorithms offered by random processes. We demonstrated
that simple rules in random tilings are still powerful enough to
control important global properties, including the formation of
loops (for example, the difference between mazes and trees), the
branching rules (such as the configuration of junctions, the dis-
tances between adjacent branching points and the lengths of straight
branches), the growth direction of trees, the proximity between
adjacent networks (interwoven versus separated) and the size
distribution (different means and standard deviations).

The principle of programmable disorder offers solutions that
neither deterministic nor random processes alone can offer. DNA
origami can be used to create arbitrary complex patterns on the
scale of 100 nm. Using scaffold strands that are longer than the
M13 viral DNA45 or arrays of addressable DNA origami tiles42,43,
it is possible to create complex patterns that are up to nine times
larger than a single origami folded from M13. However, if only
deterministic assembly processes are used to create any of the
loops, mazes and trees that we showed here, one would have to
further increase the complexity of uniquely addressable DNA
nanostructures by 10 to 100 times over what current techniques
are capable of. Moreover, to create all possible mazes on 5 × 5
arrays with designed entrances and exits as we demonstrated, it
would be 256 times more expensive if the assembly processes are
fully deterministic. On the other hand, if only random processes
are involved and the global features are not properly controlled by
local rules, it would be impossible to create complex patterns with
desired properties, without simultaneously generating a large
fraction of molecules that are wasted.

One example application of random DNA origami arrays is for
molecular robots (Supplementary Note 9.1). The sophisticated func-
tions of biological motors46,47 have inspired the development of syn-
thetic DNA motors using DNA origami as a 2D playground48–50.
However, compared with the operating environments of biological
motors, tracks that can be built on a single DNA origami are far
less complex. The random arrays that we created could be used to
provide DNA robots with diverse operating and testing environ-
ments that are much more complex than a single DNA origami.
This would be critical for enabling the development of DNA
robots that perform increasingly sophisticated tasks such as maze-
solving, and for improving our understanding of how to build
robust DNA robots that operate well under a wide range of
conditions. Compared with deterministic approaches, random
arrays have the distinct advantage of performing massively parallel
experiments in one test tube.

From a broader perspective, random DNA origami arrays are not
only useful for creating patterns that are geometrically interesting,
like the examples that we showed here, but they could also be
applied to create combinatorial circuits and devices with desired
functions (Supplementary Fig. 69). A single DNA origami can be
used to organize carbon nanotubes51 and polymers14 to build func-
tional components of molecular electronics, and to organize metal
nanoparticles12, nanorods13,52 and organic dyes11 to build functional
components of molecular plasmonics and photonics. Using these
approaches as building blocks, and using the principle of program-
mable disorder in random DNA origami arrays, it would be possible
to create complex networks of molecular devices with controlled
size distributions, branching properties and circuit functions
(Supplementary Note 9.3). Much as combinatorial approaches for
generating random 1D chains of polymers have been used to revo-
lutionize chemical synthesis53 and the selection of functional nucleic
acids54, programmable disorder that extends the principle to
random 2D networks of molecules now creates new opportunities
for fabricating more complex molecular devices organized by
DNA nanostructures.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Syntax of the programming language.
(1) Defining patterns on a tile:

tile = Connect[((x1, y1), (x2, y2)) @ (cx1, cy1), …]
(xi , yi) defines the start and end points of a line. (cxi , cyi) defines the centre of
an arc. When @ is missing, the points are connected by a straight line.

(2) Defining a grid:
grid[(i, j), tile] = [If cond1(i, j), tile @ orient1;…]
(i, j) indicates a location on the grid. condi defines a set of specific locations on
the grid, as a function of (i, j). orienti defines the orientation of a tile at condi on
the grid. The default grid is grid[(i, j), tile] = [tile@ 0 degree], which has the same
orientation of tiles at all locations. tile can be replaced by a set of tiles
tile[1, 2, …, n], in which case each condi will be associated with a subset of tiles
tile[t1, t2, …], ti ∈ {1, 2, …, n}.

(3) Defining a random choice of tile orientations:
tile @ RandomChoice[(p1, p2, …)→ (orient1, orient2, …)]
orienti defines an orientation of the tile. pi is the probability of orienti (

∑
pi = 1).

The default probability is 1/n, where n is the total number of choices.
(4) Defining a random choice of tile types:

RandomChoice[(p1, p2, …)→ (tile1 @ orient1, tile2 @ orient2, …)]
orienti defines an orientation of tilei. pi is the probability of tilei @ orienti
(
∑

pi = 1). The default probability is 1/n, where n is the total number of choices.
The default orientation is 0 degree.

(5) Defining a random array:
array = tile @ RandomChoice @ grid

Sample preparation. Single-stranded M13mp18 DNA (scaffold strand) was
purchased from Bayou Biolabs (Catalog # P-107) at 1 g l−1 in 1 × TE buffer (10 mM
Tris-HCl, 1 mM EDTA, pH 8.0). The concentration of scaffold strand was calculated
on the basis of DNA ultraviolet absorbance measurements at 260 nm using
NanoDrop2000 (Thermo Scientific). Staple strands were purchased unpurified from
Integrated DNA Technologies in 1 × TE buffer (pH 8.0) at 100 μM each.

Individual DNA origami tiles for creating unbounded arrays were prepared with
50 nM scaffold strand and 75 nM staple strands in 1 × TE/Mg2+ (1 × TE buffer
containing 12.5 mM magnesium acetate). Individual DNA origami tiles for creating
finite arrays with designed size were prepared with 10 nM scaffold strand and 75 nM
staples in 1 × TE/Mg2+ buffer. In both protocols the scaffold and staple mixtures
were kept at 90°C for 2 min and annealed from 90°C to 20°C at 6 sec per 0.1°C.

Unbounded arrays were constructed using: (1) an overnight anneal from 40 to
30°C at 5 min per 0.1°C and then from 30 to 20°C at 10 sec per 0.1°C (examples
include the arrays shown in Figs 2– 5); (2) a two-day anneal from 40 to 30°C at
25 min per 0.1°C and then from 30 to 20°C at 10 sec per 0.1°C (examples include the
array shown in Supplementary Fig. 19); or (3) a one-week anneal from 40 to 30°C at
60 min per 0.1°C and then from 30 to 20°C at 30 min per 0.1°C (examples include
the arrays shown in Supplementary Figs 20 and 21).

Before mixing different types of tiles for creating finite arrays with designed size,
a tenfold excess (relative to the concentration of staple strands) of a full set of 44
negation strands (sequences listed in Supplementary Table 6) were added to each

type of DNA origami tile and quickly cooled down from 50°C to 20°C at 2 sec per
0.1°C. Different types of tiles were then mixed together and annealed from 50°C to
20°C at 2 min per 0.1°C.

AFM imaging. Samples for AFM imaging of unbounded arrays were prepared by
diluting the origami to 5 nM (monomer concentration) in 1 × TE/Mg2+ buffer. After
dilution, 40 μl of the sample was deposited onto freshly cleaved mica (SPI Supplies,
9.5 mm diameter, LOT # 1170203). After 30 s the solution was removed by
sucking up all the liquid that comes off in a single thumb-up movement while
keeping the pipette attached to and almost perpendicular to the mica surface. After
that, 80 μl of a 1 × TE/Mg2+ buffer was added onto the mica and the sample
was imaged.

Samples for AFM imaging of the individual DNA origami tiles and finite arrays
with designed sizes were prepared by diluting the origami to 1 nM (single-tile or
target finite-shape concentration) in a 1 × TE/Mg2+ buffer. The following steps were
the same as for unbounded arrays, except after removing the solution, the mica
surface was washed three times with 40 μl TE buffer containing 10 mM MgCl2 and
10 mM NaCl, by performing 10 down-and-up thumb movements for each wash.
Compared with unbounded arrays, the finite arrays had a much larger excess of short
strands (including a 5× higher ratio of staples to scaffold and an addition of
negations strands at 10× the concentration of the staples), and thus the washing step
was used to remove the short strands and provide a cleaner background for imaging.

AFM images were taken in tapping mode in fluid on a Dimension FastScan Bio
(Bruker) using FastScan-D tips (Bruker). Typical scanning parameters were: scan
rate = 5 Hz, lines = 512, amplitude set point = 30–50 mV, drive amplitude =
180–240 mV, drive frequency = 110 Hz, integral gain = 1, proportional gain = 2.

Size analysis. The size of a diagonal maze or a T maze was determined as the
number of tiles in the maze. The size of an arc maze was determined as the size of its
equivalent diagonal maze. The size of a tree was determined as the number of tiles in
the tree. For calculating the size of loops in random arrays of arc and cross tiles, the
length of an arc on each tile was 0.5, and the length of a straight line on each tile was 1.
To analyse trees and loops, we assumed that each array was on a torus. All of the
expected sizes of mazes, trees and loops were computed from numerical simulations
with ten thousand to one million independent trials. All data analysis of the sizes was
calculated as μ ± 2σ in a 10 × 10 tile area from three to ten independent AFM
images, where μ is the mean, σ is the standard error of the mean and ± 2σ
corresponds to 95% confidence.

Yield calculation. The yield of finite DNA origami arrays was calculated using high-
resolution 30 μm × 30 μm AFM images, each containing 3,000 to 12,000 DNA
origami tiles. The calculation was aided by a custom software tool, which determines
the yield as the total pixels in isolated complete assemblies of the designed
size divided by the total pixels above the threshold of background
(Supplementary Fig. 59).

Code availability. The code for the yield calculations can be accessed online at
http://qianlab.caltech.edu/YieldCalculator/.
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